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The performance of speaker verification depends on the overlap region of the decision scores of true and imposter 

trials. Motivated by the fact that the overlap region can be reduced by maximizing the between-class distance 

while minimizing the within-class variance of the trials, we present in this paper two cosine metric learning 

(CML) back-end algorithms. The first one, named m-CML, aims to enlarge the between-class distance with a 

regularization term to control the within-class variance. The second one, named v-CML, attempts to reduce the 

within-class variance with a regularization term to prevent the between-class distance from getting smaller. 

The regularization terms in the CML methods can be initialized by a traditional channel compensation method, 

e.g., the linear discriminant analysis. These two algorithms are combined with front-end processing for speaker 

verification. To validate their effectiveness, m-CML is combined with an i-vector front-end since it is good at 

enlarging the between-class distance of Gaussian score distributions while v-CML is combined with a d-vector or 

x-vector front-end as it is able to reduce the within-class variance of heavy-tailed score distributions significantly. 

Experimental results on the NIST and SITW speaker recognition evaluation corpora show that the proposed 

algorithms outperform their initialization channel compensation methods, and are competitive to the probabilistic 

linear discriminant analysis back-end in terms of performance. For comparison, we also applied the m-CML and 

v-CML methods to the i-vector and x-vector front-ends. 
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. Introduction 

Speaker verification is a task of verifying whether the claimed iden-

ity of a test speaker is true or not. A speaker verification system, in

eneral, can be divided into two parts: a front-end, which extracts iden-

ity features given a speech signal (an utterance), and a back-end, which

erifies the claim of a test speaker in a trial by calculating the similarity

core of the identity features of the test and enrollment speakers of the

rial ( Dehak et al., 2011; Li and Mak, 2015; Hasan and Hansen, 2014 ). 

In the literature, three front-ends have been widely studied: i-vector

ront-end based on the Gaussian mixture model and the universal back-

round model (GMM-UBM) ( Reynolds et al., 2000 ), i-vector front-end

ased on deep neural network and UBM (DNN-UBM), and the deep em-

edding based front-end, such as d-vector ( Variani et al., 2014 ) and x-

ector ( Snyder et al., 2017; 2018 ). The GMM-UBM based i-vector front-

nd first models all speakers by a single GMM, and then uses factor anal-

sis ( Dehak et al., 2011 ) to reduce the dimension of the supervectors
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 Campbell et al., 2006b; 2006a; Kinnunen and Li, 2010 ) produced by

MM-UBM. The DNN-UBM/i-vector front-end ( Lei et al., 2014; Kenny

t al., 2014; Richardson et al., 2015a; Campbell, 2014 ) uses the posterior

robability of senones produced by the acoustic model of a speech recog-

ition system to replace the posterior probability produced by GMM-

BM at the frame level. The deep embedding based front-end takes the

ctivations of the last hidden layer or bottleneck layer as the speaker

eatures ( Variani et al., 2014; Richardson et al., 2015b; Wang et al.,

017; Yaman et al., 2012; Snyder et al., 2017; 2018 ). 

In comparison, commonly used back-ends include the cosine sim-

larity scoring ( Dehak et al., 2011 ), the support vector machine

 Cumani and Laface, 2014 ), and the probabilistic linear discriminant

nalysis (PLDA) ( Prince and Elder, 2007; Kenny, 2010; Garcia-Romero

nd Espy-Wilson, 2011; Li et al., 2017; Mak et al., 2016 ). Those back-

nds are linear or shallow classifiers, which contain either no or at most

ne nonlinear layer. To better capture the nonlinearity of data, DNNs
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Fig. 1. Probability distribution of the decision scores produced from a speaker 

verification system. “Positive ” denotes the true trials, “Negative ” denotes the 

imposter trials. 
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ith more than one nonlinear layers have been investigated for back-

nds in various ways, e.g. ( Stafylakis et al., 2012; Senoussaoui et al.,

012; Ghahabi and Hernando, 2014; 2017; Tan et al., 2018 ). For ex-

mple, different combinations of restricted Boltzmann machines were

tudied in Stafylakis et al. (2012) and Senoussaoui et al. (2012) . Gha-

abi et al. took deep belief networks (DBNs) as a discriminative back-end

 Ghahabi and Hernando, 2014 ), and further proposed a hybrid system

ased on DBN and DNN to discriminatively model each target speaker

 Ghahabi and Hernando, 2017 ). Tan et al. (2018) applied DNN to com-

ensate decision score shifts caused by strong additive noise. 

Because the output of a front-end is both inter-session-dependent and

peaker-dependent, it is necessary to compensate channel- and session-

ariability before scoring. Common compensation methods include lin-

ar discriminant analysis (LDA) ( Bishop, 2006 ), within-class covariance

ormalization (WCCN) ( Hatch et al., 2006 ), and nuisance attribute pro-

ection (NAP) ( Campbell et al., 2006b ), which are all linear transfor-

ations. Recently, nonlinear compensation methods have drawn much

ttention. For example, Cumani et al. (2017) proposed a nonlinear trans-

ormation of i-vectors to make them more suitable for the PLDA back-

nd. Zheng Tieran (2018) developed a DNN based dimensionality re-

uction model as an alternative to LDA. Reported results showed that

hose back-ends can generate reasonably good performance. However,

hose back-end were developed without directly considering the evalua-

ion metrics of speaker verification, such as equal error rate (EER), their

erformance may be still suboptimal. 

Two classes of methods have been investigated to optimize the evalu-

tion metrics directly. The first one, named back-end metric learning , uses

bjective functions that are equivalent to the evaluation metrics. For ex-

mple, the work in Ahmad et al. (2014) and Li et al. (2016) attempts to

aximize the margin between target and imposter trials with the triplet

oss. Fang et al. (2013) , also employed neighborhood component analy-

is to learn a projection matrix, which minimizes the average leave-one-

ut k-nearest neighbor classification error. The other class, based on the

o-called end-to-end deep learning , jointly trains the front-end and back-

nd of DNN based systems. More specifically, these methods for text-

ependent speaker verification ( Heigold et al., 2016; Wan et al., 2017 )

earn a deep model, which maps a pair of enrollment and test utterances

irectly to a cosine similarity score. In Snyder et al. (2016) , David et al.

pplied a similar end-to-end framework to jointly train a deep neural

etwork front-end and a PLDA-like back-end. Both classes of methods

ave demonstrated promising results, indicating that directly optimiz-

ng the evaluation metrics like criteria is a proper approach to improving

erformance of speaker verification. However, further research is indis-

ensable to unveil the full potential of this approach. 

This paper is devoted to the problem of speaker versification with

ts focal point placed on the back-end metric learning under the follow-

ng two considerations. First, a metric learning based back-end can be

ombined flexibly with a front-end. Second, a back-end metric learn-

ng method may be easily extended to an end-to-end deep learning

ethod, as if it is optimized by a gradient descent algorithm. We pro-

ose a cosine metric learning (CML) framework based on cosine simi-

arity scoring. CML aims to improve EER directly by minimizing the

verlap region of the decision scores between true and imposter trials.

e present two algorithms, leading to two back-ends, both learn a lin-

ar transformation through gradient descent. The first back-end, named

-CML , aims to enlarge the between-class distance with a regulariza-

ion term to control the within-class variance. We apply this back-end

o an i-vector front-end since it is good at enlarging the between-class

istance of Gaussian score distributions. The second back-end, called

-CML , attempts to reduce the within-class variance with a regulariza-

ion term to control the between-class distance. This back-end is com-

ined with a d-vector front-end since it is able to reduce the within-class

ariance of heavy-tailed score distributions significantly. The regular-

zation terms in the proposed methods play a very important role on

erformance, which can be initialized by a linear transform produced

rom a traditional channel compensation method, such as linear dis-
11 
riminant analysis (LDA) ( Bishop, 2006 ), within-class covariance nor-

alization (WCCN) ( Hatch et al., 2006 ), nuisance attribute projection

NAP) ( Campbell et al., 2006b ), etc. The presented methods are evalu-

ted on the NIST speaker recognition evaluation (SRE) corpora. Results

emonstrate that these methods can combine traditional compensation

ethods and the cosine similarity scoring effectively for optimizing EER.

This paper differs from our preliminary work ( Bai et al., 2018 ) in

everal major aspects, which include a new v-CML algorithm in this pa-

er, a faster and more stable optimization algorithm of L-BFGS, a further

nalysis of the variation of the between-class distance and within-class

ariance, and the computational complexity analysis of the CML. Con-

equently, experimental results in this paper are different from those

eported in Bai et al. (2018) . 

The rest of this paper is organized as follows. We discuss the mo-

ivation and problem formulation in Section 2 . Section 3 presents the

heory and optimization algorithms for cosine metric learning. Experi-

ents are conducted and the results are presented in Section 4 . Finally,

ection 5 gives some important conclusions. 

. Motivation 

The objective of this work is to optimize EER of a speaker verification

ystem given a well-trained front-end. It is known that speaker verifica-

ion is a two class classification problem —true trials and imposter trials,

nd EER is determined by the overlap region of the decision scores of

he two classes, as illustrated in Fig. 1 . It is seen from the figure that the

verlap region of the decision scores relies heavily on the between-class

istance and within-class variance. Consequently, optimizing EER can

e transformed into an equivalent problem of enlarging the between-

lass distance while reducing the within-class variance. 

To study back-end metric learning, we adopt three representa-

ive front-ends: the GMM-UBM/i-vector front-end, the d-vector front-

nd, and the x-vector front-end. The first one contains a GMM-

BM ( Reynolds et al., 2000 ), which is trained from the pool of all

peech frames of the development data, and a total variability ma-

rix ( Dehak et al., 2011 ) that encompasses both speaker- and channel-

ariability. It first extracts a supervector from each utterance, which

s the zero- and first-order Baum-Welch statistics of the utterance, and

hen reduces the supervectors to low-dimensional i-vectors by the total

ariability matrix. In comparison, the d-vector front-end ( Variani et al.,

014 ) averages the frame-level features of an utterance produced from

he top hidden layer of a DNN classifier for an utterance-level d-vector.

he DNN is trained to minimize the classification error of speech frames,

here the ground-truth label of a speech frame is the indicator vector of

he speaker to whom the speech frame belongs to. The x-vector ( Snyder

t al., 2017; 2018 ) front-end adopts a similar framework with the d-

ector front-end except that it introduced a statistic pooling layer into

NN to project variable-length segments into embedding vectors. How-

ver, the feature vectors produced from the three front-ends exhibit very
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Fig. 2. Probability distribution of the cosine similarity scores of i-vectors and 

d-vectors. 

Fig. 3. Diagram of the cosine metric learning back-end based system. 
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ifferent statistical properties. As illustrated in Fig. 2 , if the cosine simi-

arity scoring is adopted as the back-end, the probability distribution of

he decision scores produced from a GMM-UBM/i-vector front-end ap-

roximates a normal distribution, and the overlap region of the scores

epends mainly on the between-class distance. But the probability dis-

ribution of the decision scores produced from a d-vector or x-vector

ront-end is heavy-tailed ( Variani et al., 2014 ), where the overlap region

ay be reduced significantly by reducing the within-class variance. 

Motivated by the above facts, as well as the experimental results

rom Dehak et al. (2011) that cosine similarity scoring is good enough

n many cases, we present in this paper two back-end metric learning

ethods based on cosine similarity scoring. The first one aims to enlarge

he between-class distance while controlling the within-class variance to

e small. The second one attempts to reduce the within-class variance

hile maintaining the between-class distance unchanged. 

. Cosine metric learning based back-ends 

Let us first provide an overview of the proposed CML based speaker

erification system and then present the objective functions and opti-

ization algorithm of two CML back-ends. 

.1. System overview 

The proposed cosine metric learning based speaker verification sys-

em is illustrated in Fig. 3 . In the development stage, we first train a

ront-end, and extract an identity feature vector x from each training

tterance by the specified front-end. In this work, we adopt the i-vector

nd d-vector based front-ends though many front-ends can be used.

hen, the true and imposter trials are constructed manually from the

dentity feature vectors, due to the requirement for training the pro-

osed CML back-ends, where a down-sampling method for constructing

he training set will be given in Section 4.2.2 ). Finally, we train a CML
12 
ack-end, which produces a linear transformation matrix A . The objec-

ive function of the CML back-end contains a regularization term. This

erm should be initialized from an initial compensation transformation

atrix A 0 , which can be produced from an existing channel or session

ompensation technique, e.g., LDA, WCCN, etc. 

In the test stage, we extract the identity feature vectors of a test

rial from the front-end, and then conduct verification by the cosine

imilarity scoring as follows: 

( 𝐱 enroll , 𝐱 test ; 𝐀 ) = 

⟨𝐀𝐱 enroll , 𝐀𝐱 test ⟩‖𝐀𝐱 enroll ‖‖𝐀𝐱 test ‖ ⋛ 𝜃. (1)

here x enroll and x test denote, respectively, the identity feature vectors

f the enrollment and test utterances of the trial, and 𝜃 is a decision

hreshold. 

.2. Objective functions 

In the development stage, we first construct a development set

( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 )} 𝑁 

𝑖 =1 from the identity feature vectors of training utterances,

s illustrated in Fig. 3 , where ( x i , y i , l i ) is a training trial and N is the

umber of the training trials with x i and y i as a pair of the identity fea-

ure vectors and l i as the ground-truth label of the trial. If x i and y i are

rom the same speaker, we set 𝑙 𝑖 = 1 ; otherwise we set 𝑙 𝑖 = −1 . We define

he index sets of the true and imposter trials as pos = { 𝑖 |𝑙 𝑖 = 1} 𝑁 

𝑖 =1 and

eg = { 𝑖 |𝑙 𝑖 = −1} 𝑁 

𝑖 =1 , respectively. 

The optimization problem of CML is given by: 

 

∗ = arg min 
𝐀 

𝑓 𝐀 ( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 ) (2)

ith f A ( x i , y i , l i ) defined as 

 𝐀 ( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 ) = 𝓁({( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 )} 𝑖 ; 𝐀 ) + 𝜆Ω𝑓 𝐀 
(3)

here 𝓁(·) is a loss function that minimizes EER under the cosine simi-

arity scoring S (·), Ω𝑓 𝐀 
is a regularization term controlling the complex-

ty of the learning machine, 𝜆 > 0 is a tunable hyperparameter, and

 𝐀 ( ⋅) = 𝓁( ⋅) + 𝜆Ω𝑓 𝐀 
is the learning machine. Because parameter A is a

inear transformation matrix, we adopt a common regularization term

𝑓 𝐀 
= ‖𝐀 ‖2 2 . As will be discussed later, the loss function 𝓁(·) under the

osine similarity scoring framework is nonconvex; therefore, we add an

nitialization A 0 to Ω𝑓 𝐀 
so as to prevent from bad local minima: 

𝑓 𝐀 
= ‖𝐀 − 𝐀 0 ‖2 2 (4)

here A 0 is a good linear model produced from any channel or ses-

ion compensation method, see Section 3.2.3 for the compensation tech-

iques in consideration. When 𝜆 → ∞, A approaches to A 0 . In other

ords, the performance of the proposed method is lower-bounded by

ts initialization technique. 

In the following, we introduce two loss functions 𝓁(·), which aims to

nlarge the between-class distance and reduce the within-class variance,

espectively. 

.2.1. m-CML: an objective for enlarging between-class distance 

It is easy to see that the means of the decision scores of the true

nd imposter trials are 1 |pos | ∑𝑖 ∈pos 𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) and 1 |neg | ∑𝑖 ∈neg 𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 )
espectively. Hence, a natural choice for enlarging the between-class

istance is to solve the following optimization problem: 

rg max 
𝐀 

1 |pos | ∑
𝑖 ∈pos 

𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) − 

1 |neg | ∑
𝑖 ∈neg 

𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) (5)

hich can be changed to minimize the following function: 

 = − 

∑
𝑖 ∈pos 

𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) + 𝛼
∑
𝑖 ∈neg 

𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) (6)

here 𝛼 = 

|pos ||neg | . Note that 𝛼 may also be defined as a free hyperparam-

ter, but this is beyond the main thrust of this paper. 

The loss function in (6) is unbounded. So, optimizing (6) without any

onstraints will also enlarge the within-class variance, which is a side
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1 An efficient implementation of the L-BFGS algorithm can be found at 

Schmidt (2005) . 
ffect. To prevent this side effect from happening, we substitute (6) into

2) , which gives the following optimization problem: 

 

∗ = arg min 
𝐀 

𝑓 m 𝐀 ( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 ) (7) 

here 

 

m 
𝐀 ( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 ) = − 

∑
𝑖 ∈pos 

𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) 

+ 𝛼
∑
𝑖 ∈neg 

𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) + 𝜆‖𝐀 − 𝐀 0 ‖2 2 (8) 

nd the superscript m denotes m-CML. 

.2.2. v-CML: an objective for reducing within-class variance 

Minimizing the within-class variances of the decision scores of the

rue and imposter trials can be formulated as minimizing the following

unction: 

 = 

1 |pos | − 1 
∑
𝑖 ∈pos 

[ 𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) − 𝑆 pos ] 2 

+ 

1 |neg | − 1 
∑
𝑖 ∈neg 

[ 𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) − 𝑆 neg ] 2 (9) 

here: 

 pos = 

1 |pos | ∑
𝑖 ∈pos 

𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) (10)

 neg = 

1 |neg | ∑
𝑖 ∈neg 

𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) (11)

o constrain the loss function from its side effect which is the reduction

f the between-class distance, we substitute (9) to (2) and get a new

ptimization problem, named v-CML: 

 

∗ = arg min 
𝐀 

𝑓 v 𝐀 ( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 ) (12) 

here 

 

v 
𝐀 ( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 ) = 

∑
𝑖 ∈pos 

[ 𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) − 𝑆 pos ] 2 

+ 𝛼
∑
𝑖 ∈neg 

[ 𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) − 𝑆 neg ] 2 + 𝜆‖𝐀 − 𝐀 0 ‖2 (13) 

nd 𝛼 = 

|pos |−1 |neg |−1 . 
.2.3. Initialization compensation 

Many useful linear transformation can be used to initialize the matrix

 0 in (4) . In this work, we adopt LDA, WCCN or NAP, which are briefly

escribed as follows. 

LDA attempts to find a projection matrix A 0 to minimize the intra-

lass variance caused by channel effects and meanwhile maximizes the

ariance between different speakers. This can be formulated as the fol-

owing generalized eigenvalue decomposition problem: 

 𝑏 𝐕 = 𝚲𝐒 𝑤 𝐕 (14)

here S b and S w are between- and within-class covariance matrices

 Dehak et al., 2011 ), and 𝚲 is a diagonal matrix consisting of eigen-

alues. The projection matrix A 0 is composed by the best eigenvectors

those with highest eigenvalues) of V . 

WCCN minimizes the error rate of false acceptance and false rejec-

ion Hatch et al. (2006) . It can be explored through the inverse of the

ithin class covariance matrix W : 

 = 

1 
𝑆 

𝑆 ∑
𝑠 =1 

1 
𝑛 𝑠 

𝑛 𝑠 ∑
𝑖 =1 

( 𝛚 

𝑠 
𝑖 
− 𝛚 𝑠 )( 𝛚 

𝑠 
𝑖 
− 𝛚 𝑠 ) 𝑇 (15)

here 𝜔 𝑠 is the mean of the i-vectors/d-vectors of the s -th speaker. The

ompensation matrix A 0 is then the Cholesky decomposition of 𝐖 

−1 ,

.e., 

 

−1 = 𝐀 

𝑇 
0 𝐀 0 (16)
13 
NAP attempts to learn a linear transformation: 

 0 = 𝐈 − 𝐑𝐑 

𝑇 (17)

here I is the identity matrix and R is a low rank matrix, consisting of k

igenvectors of W in (15) , which correspond to the k largest eigenvalues

f W . 

.3. Optimization algorithm 

We use the L-BFGS algorithm ( Liu and Nocedal, 1989 ) 1 to solve the

ptimization problems in (7) and (12) . L-BFGS is a fast gradient descent

lgorithm, which enhances the robustness of our algorithms as it does

ot need to specify the learning rate manually. But in order to use the

-BFGS solver, we need to know the gradients of the optimization prob-

ems in (7) and (12) , which are as follows: 

.3.1. Gradient of m-CML 

The gradient of 𝑓 m 𝐀 ( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 ) in (7) with respect to A can be derived

s: 

 𝑓 m 𝐀 ( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 ) = − 

∑
𝑖 ∈pos 

𝜕𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) 
𝜕𝐀 

+ 𝛼
∑
𝑖 ∈neg 

𝜕𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) 
𝜕𝐀 

+ 2 𝜆( 𝐀 − 𝐀 0 ) (18) 

here 

𝜕𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) 
𝜕𝐀 

= 

𝜕 

{ 

𝐱 𝑇 
𝑖 
𝐀 𝑇 𝐀𝐲 𝑖 √

𝐱 𝑇 
𝑖 
𝐀 𝑇 𝐀𝐱 𝑖 

√
𝐲 𝑇 
𝑖 
𝐀 𝑇 𝐀𝐲 𝑖 

} 

𝜕𝐀 

(19) 

or simplicity and clarity, we denote, respectively, the numer-

tor and denominator of (19) by 𝑢 ( 𝐀 ) = 𝐱 𝑇 
𝑖 
𝐀 

𝑇 𝐀𝐲 𝑖 and 𝑣 ( 𝐀 ) =
 

𝐱 𝑇 
𝑖 
𝐀 

𝑇 𝐀𝐱 𝑖 
√ 

𝐲 𝑇 
𝑖 
𝐀 

𝑇 𝐀𝐲 𝑖 . It follows then that: 

 

( 

𝑢 ( 𝐀 ) 
𝑣 ( 𝐀 ) 

) 

= 

1 
𝑣 ( 𝐀 ) 

𝜕𝑢 ( 𝐀 ) 
𝜕𝐀 

− 

𝑢 ( 𝐀 ) 
𝑣 ( 𝐀 ) 2 

𝜕𝑣 ( 𝐀 ) 
𝜕𝐀 

(20)

𝜕𝑢 ( 𝐀 ) 
𝜕𝐀 

= 𝐀 

(
𝐱 𝑖 𝐲 𝑇 𝑖 + 𝐲 𝑖 𝐱 𝑇 𝑖 

)
(21) 

𝜕𝑣 ( 𝐀 ) 
𝜕𝐀 

= 

√ 

𝐲 𝑇 
𝑖 
𝐀 

𝑇 𝐀𝐲 𝑖 √ 

𝐱 𝑇 
𝑖 
𝐀 

𝑇 𝐀𝐱 𝑖 
𝐀𝐱 𝑖 𝐱 𝑇 𝑖 + 

√ 

𝐱 𝑇 
𝑖 
𝐀 

𝑇 𝐀𝐱 𝑖 √ 

𝐲 𝑇 
𝑖 
𝐀 

𝑇 𝐀𝐲 𝑖 
𝐀𝐲 𝑖 𝐲 𝑇 𝑖 (22)

ubstituting (19) –(22) to (18) gives the final form of the gradient of

 

m 
𝐀 ( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 ) . 

.3.2. Gradient of v-CML 

Similarly, the gradient of 𝑓 v 𝐀 ( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 ) is: 

 𝑓 v 𝐀 ( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 ) 

= 

∑
𝑖 ∈pos 

2 

[ 

𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) − 

1 |pos | ∑
𝑗∈pos 

𝑆( 𝐱 𝑗 , 𝐲 𝑗 ; 𝐀 ) 

] 

×

[ 

𝜕𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) 
𝜕𝐀 

− 

1 |pos | ∑
𝑗∈pos 

𝜕𝑆( 𝐱 𝑗 , 𝐲 𝑗 ; 𝐀 ) 
𝜕𝐀 

] 

+ 𝛼
∑
𝑖 ∈neg 

2 

[ 

𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) − 

1 |neg | ∑
𝑗∈neg 

𝑆( 𝐱 𝑗 , 𝐲 𝑗 ; 𝐀 ) 

] 

×

[ 

𝜕𝑆( 𝐱 𝑖 , 𝐲 𝑖 ; 𝐀 ) 
𝜕𝐀 

− 

1 |neg | ∑
𝑗∈neg 

𝜕𝑆( 𝐱 𝑗 , 𝐲 𝑗 ; 𝐀 ) 
𝜕𝐀 

] 

+ 2 𝜆( 𝐀 − 𝐀 0 ) (23) 

sing the results in (19) –(22) , one can readily derive the final form of

he gradient of 𝑓 v ( 𝐱 𝑖 , 𝐲 𝑖 , 𝑙 𝑖 ) in (23) . 
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Table 1 

Test conditions. “EN ” denotes the number of enrollment speakers, 

“TN ” denotes the number of test speech segments, “Trials-N ” de- 

notes the number of trials, and C i denotes a test condition with 

i being the number of the enrollment speech segments provided 

from a speaker which varies from 1 to 5. The letters “K ” and “M ”

after numbers are short for measurement “thousand ” and “mil- 

lion ” respectively. 

Condition Female Male 

Name EN TN Trials-N EN TN Trial-N 

C1 394 2748 1.08M 238 1650 393K 

C2 390 2748 1.07M 236 1650 389K 

C3 381 2748 1.05M 231 1650 381K 

C4 362 2748 995K 221 1650 365K 

C5 320 2748 879K 201 1650 332K 
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Fig. 4. Diagram for constructing training trials. Each circle or triangle stands 

for an identity feature vector extracted from a speech segment by a front-end. 
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. Experiments 

In this section, we present some experimental results to validate the

eveloped algorithms. Specifically, we evaluate the m-CML with the i-

ector front-end as well as the v-CML with the d-vector front-end on

he 2006 and 2008 NIST SRE corpora in Sections 4.1 to 4.5 . Then, we

ompare m-CML and v-CML given both the x-vector and i-vector front-

nds on the speaker in the wild (SITW) corpus in Section 4.6 . 

.1. NIST SRE dataset 

The first experiment was conducted on the 8 conversation condi-

ions (8 conv condition) of the 2006 and 2008 NIST SRE corpora. The

 conv condition of 2006 NIST SRE contains 402 female speakers and

98 male speakers. The 8 conv condition of 2008 NIST SRE contains 395

emale speakers and 240 male speakers. Each speaker has 8 conversa-

ions. A speaker utterance in a conversation was approximately 1 to 2

inutes long after removing the silence segments by voice activity de-

ection (VAD), where the VAD label is determined by the ASR transcript.

e split all speech signals into segments with a segment length of 15

econds. 

The 8 conv condition of 2006 NIST SRE was used for development.

t was divided into a total of 24043 segments for the female speakers

nd 17765 segments for the male speakers, which were used to train

ll models including the GMM-UBM/i-vector and d-vector front-ends,

s well as the LDA, WCCN, NAP, and PLDA back-ends. 

The 8 conv condition of 2008 NIST SRE was used for enrollment and

est. In the enrollment stage, we selected 1 to 5 segments from the first

onversation of a speaker as his/her enrollment data, which corresponds

o 1 to 5 identity feature vectors after processing by a front-end. We took

he mean of the identity feature vectors as the speaker model. In the test

tage, we selected 1 segment from each of the remaining 7 conversations

f the speaker for test, which corresponds to 7 test identity feature vec-

ors. We took each speaker as a claimant with the remaining speakers

cting as imposters, and rotated through the tests for all the speakers.

e conducted the experiments on the female and male speakers sepa-

ately. The number of trials are summarized in Table 1 . 

.2. Experimental Setup on NIST SRE 

The frame length and frame shift were set, respectively, to 25 and

0 ms. The 19 Mel frequency cepstral coefficients (MFCCs), 13 rel-

tive spectral filtered perceptual linear predictive cepstral coefficients

RASTA-PLP) and log energy, as well as their delta and double delta are

sed as the acoustic features, resulting a feature vector of 99 dimensions

er frame ( Chang and Wang, 2017 ). 

.2.1. Front-ends 

The GMM-UBM/i-vector and d-vector were used as two front-ends.

or the GMM-UBM/i-vector front-end, we employed the MSR Identity
14 
oolbox ( Sadjadi et al., 2013 ) as its implementation. Feature warping

ith a window size of 3 seconds was applied after the acoustic fea-

ure extraction. The number of Gaussian components of the gender-

ependent GMM-UBM was set to 2048 ( Chang and Wang, 2017 ). The

imension of the total variability matrix was set to 400. 

For the d-vector front-end, the global cepstral mean and variance

ormalization was applied after the acoustic feature extraction. Gender-

ependent feedforward neural networks were used as the DNN models.

ach DNN model consists of 4 hidden layers with 512 hidden units per

ayer. We expanded each frame with a context window of 51 frames

hat centered at the current frame. The output dimension of the DNN

as set to 402 for the female speakers, and 298 for the male speakers,

hich is the same as the number of the speakers in the development set.

he d-vector of a speech segment is the average of the activations of the

peech frames derived from the last DNN hidden layer. 

.2.2. Back-ends 

For the m-CML and v-CML back-ends, we first extracted identity fea-

ure vectors from a front-end, and then constructed the training trials

rom the identity feature vectors. It is costly to use all pairs of speech

egments for training, since the number of training trials in this case

( 𝑁 − 1)∕2 where N is 24043 for the female speakers and 17765 for

he male speakers. Here we developed a sampling strategy to balance

he training accuracy and computational complexity as shown in Fig. 4 .

pecifically, to simulate the real-world test environments that the enroll-

ent and test speech signals of a test trial may have different types of

hannel noise, we randomly selected 7 identity feature vectors from each

onversation and combined them with the 7 identity feature vectors that

ame from the other 7 conversations respectively, which corresponds to

8 true trials. The construction of the true trials is as follows. As shown

n the left-hand side of Fig. 4 , each circle represents an identity vec-

or. We first selected 7 identity vectors from each conversation where

he identity vectors in the same row belong to the same conversation.

ight conversations of the speaker amount to 56 identity vectors. Then,

he identity vectors in the box of the same color are grouped into non-

verlapping trials. For example, we can obtain 7 trials from the red boxes

y combining the 7 identity vectors in the red horizontal box with the 7

dentity vectors in the red vertical box in sequence. The above example is

epeated to other boxes. Finally, we obtain 7 + 6 + …+ 1 = 28 true trials

or each speaker. Similarly, we randomly selected 8 identity feature vec-

ors from each conversation of a speaker and combined them with the 8

dentity feature vectors that came from the other 8 conversations of any

ther speaker respectively, which corresponds to 64 imposter trials. As a

esult, the number of the training trials has been reduced to 5,169,720

or the female speakers and 2,840,536 for the male speakers. As will

e analyzed in Section 4.5 , we can further reduce the computational

omplexity dramatically by randomly down-sampling the imposter tri-

ls without suffering from a significant performance degradation. To

ummarize, in our experiments, the numbers of the training trials after

own-sampling are listed in Table 2 . 
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Table 2 

Number of training trials. 

Female Male 

True trials Imposter trials True trials Imposter trials 

m-CML 10851 48289 7990 26220 

v-CML 10865 48394 7990 26220 

Table 3 

EER comparison between m-CML and its initialization channel 

compensation techniques on the female speakers. 

Method C1 C2 C3 C4 C5 

NULL 9.73% 6.63% 5.27% 4.62% 4.12% 

LDA + PLDA 4.11% 3.76% 3.50% 3.50% 3.44% 

LDA 6.88% 5.09% 4.37% 4.05% 3.74% 

LDA + m-CML 4.58% 3.70% 3.37% 3.30% 3.08% 

WCCN 5.34% 4.27% 3.74% 3.65% 3.37% 

WCCN + m-CML 4.72% 3.97% 3.58% 3.52% 3.29% 

NAP 5.57% 4.74% 4.35% 4.20% 3.94% 

NAP + m-CML 4.87% 4.28% 3.98% 3.89% 3.67% 
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Table 4 

EER comparison between m-CML and its initialization channel 

compensation techniques on the male speakers. 

Method C1 C2 C3 C4 C5 

NULL 7.72% 5.90% 5.07% 4.61% 4.63% 

LDA + PLDA 5.29% 4.90% 4.72% 4.40% 4.40% 

LDA 6.62% 5.51% 4.89% 4.49% 4.55% 

LDA + m-CML 5.54% 4.85% 4.47% 4.16% 4.20% 

WCCN 5.71% 4.92% 4.56% 4.24% 4.28% 

WCCN + m-CML 5.46% 4.83% 4.51% 4.20% 4.26% 

NAP 7.16% 5.74% 4.95% 4.54% 4.59% 

NAP + m-CML 5.70% 4.88% 4.42% 4.15% 4.19% 

Fig. 5. Relative performance improvement of LDA+m-CML over LDA, 

WCCN+m-CML over WCCN, and NAP+m-CML over NAP respectively on the 

female speakers. 

Fig. 6. Relative EER improvement of LDA+m-CML over LDA, WCCN+m-CML 

over WCCN, and NAP+m-CML over NAP respectively on the male speakers. 
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LDA, WCCN or NAP was used to initialize CML. We first tuned the

yperparameters of LDA and NAP by grid search from 50 to their maxi-

um values with a step size of 50, and then selected their best hyperpa-

ameters in terms of EER. Note that the maximum output dimension of

DA can not be larger than 𝑁 − 1 , where N is the number of the training

peakers. Specifically, for the GMM-UBM/i-vector front-end, the output

imension of LDA was set to 200 for both the female and male speak-

rs; the corank number of NAP was set to 350 for the female speakers

nd 100 for the male speakers. For the d-vector front-end, the output di-

ension of LDA was set to 400 for the female speakers and 297 for the

ale speakers; the corank number of NAP was set to 100 for both the

emale and male speakers. The m-CML with the three initialization tech-

iques are denoted, respectively, as LDA+m-CML, WCCN+m-CML, and

AP+m-CML. The v-CML with the three initialization techniques are

enoted, respectively, as LDA+v-CML, WCCN+v-CML, and NAP+v-

ML. 

The performance of the presented CML methods is evaluated in terms

f EER and detection error tradeoff (DET) curve. For comparison, we

lso evaluate the performance of LDA, WCCN and NAP under the cosine

imilarity scoring framework. Also presented is the performance of the

osine similarity scoring back-end without any channel or session com-

ensation techniques, denoted as “NULL ”, as well as the performance of

he state-of-the-art LDA+PLDA back-end for comparison. The parame-

er settings of LDA and NAP are the same as those in the CML methods.

.3. Results for m-CML with the i-vector front-end 

In this subsection, GMM-UBM/i-vector is used as front-end for all

tudied methods. 

.3.1. Main results 

Table 3 lists the EER results on the female speakers. From the table,

ne can see that the proposed CML methods outperform their initializa-

ion methods. Fig. 5 plots the relative performance improvement of the

-CML methods over their initialization methods. As seen, LDA+m-

ML obtained an EER of relatively 33.4% lower than LDA in the C1

ondition, and more than 15% in the C1 to C5 conditions. WCCN+CML

nd NAP+CML slightly outperform, respectively, WCCN and NAP. 

Table 4 lists the EER results on the male speakers. Fig. 6 shows the

elative performance improvement of the m-CML methods over their

nitialization methods. From the table and the figure, one can see that

he experimental conclusion is similar with that on the female speakers.

or example, LDA+m-CML achieves 16.3% relative improvement over

DA, and NAP+m-CML achieves 20.4% relative improvement over NAP

n the C1 condition. 
15 
The performance of the state-of-the-art LDA+PLDA back-end is also

resented in Tables 3 and 4 as a reference. Note that it is not fair or

roper to compare m-CML with the LDA+PLDA back-end directly since

-CML aims to improve the performance of existing channel or session

ompensation methods under the cosine similarity scoring framework.

he reasons that we focus on applying CML to the cosine similarity scor-

ng without considering LDA+PLDA as a baseline are multiple, includ-

ng but not limited to: 1) the cosine similarity scoring is not simpler than

LDA; 2) it does not rely on any model assumption and hence it can be

mproved, e.g., with the use of some deep embedding based front-ends

 Garcia-Romero et al., 2019; Xie et al., 2019 ). 

As seen, LDA+PLDA achieved EERs of 4.11% to 3.44% for the fe-

ale speakers, and 5.29% to 4.40% from the C1 to C5 conditions for the
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Fig. 7. DET curves produced by LDA, LDA+m-CML, and NULL in the C1 con- 

dition on the females. 

Fig. 8. Score distributions of LDA and LDA+m-CML in the C1 condition on the 

females. 
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Fig. 9. EER of LDA+m-CML and LDA as a function of the hyperparameter 𝜆 in 

the C1 condition for the female speakers. 

Fig. 10. Between-class distance of LDA+m-CML as a function of the hyperpa- 

rameter 𝜆 in the C1 condition for the female speakers. 

Fig. 11. Within-class variance of LDA+m-CML as a function of the hyperpa- 

rameter 𝜆 in the C1 condition for the female speakers. 
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ale speakers. m-CML obtained better performance than LDA+PDLA in

he C2 to C5 conditions. For example, LDA+m-CML achieved approxi-

ately 10.5% relative improvement in the C5 condition on the female

peakers. 

The DET curves of both LDA+m-CML and LDA in the female C1

ondition are plotted in Fig. 7 . One can see that LDA+m-CML yields a

etter DET performance than LDA. 

.3.2. Effects of hyperparameter 𝜆 on performance 

Because the effects of 𝜆 on both genders are similar, we show only

he results for the female speakers. Fig. 8 plots the decision score distri-

utions of LDA and LDA+m-CML. From the figure, one can make the

ollowing observations. First, LDA+m-CML yielded a larger between-

lass distance than LDA. Second, although it produced a larger within-

lass variance of the decision scores of the imposter trials than LDA,

DA+m-CML yielded a smaller overlap region than LDA. As a result,

DA+m-CML has a smaller EER than LDA, which is justifies the moti-

ation of this work as well as the feasibility of the presented methods. 

Fig. 9 plots the EER as a function of the hyperparameter 𝜆 in the C1

ondition. It is seen that the EER curve of LDA+m-CML first decreases

nd then increases along with the value of 𝜆. The underlying reason can

e explained as follows. If the value of 𝜆 is small, the regularization term

n (4) does not play an important role. Consequently, CML does not only

ncrease the between-class distance, but also the within-class variance as

 side effect. As a result, the EER performance is not improved compared

o its initialization. At the extreme case when the value of 𝜆 is close to

ero, the regularization term may be neglected, leading to performance
16 
egradation. On the other hand, if the value of 𝜆 is too large, CML ap-

roaches to its initialization point. The same experimental phenomenon

as observed for WCCN+CML and NAP+CML. 

The aforementioned experimental phenomena can be further ex-

lained by analyzing the results in Figs. 10 and 11 jointly, where the

wo figures show how the between-class distance and within-class vari-

nce vary along with the value of 𝜆, respectively. As seen, when the
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Table 5 

EER comparison between v-CML and its initialization channel com- 

pensation techniques on the female speakers. 

Method C1 C2 C3 C4 C5 

NULL 13.24% 12.90% 12.51% 12.48% 12.33% 

LDA + PLDA 8.27% 7.74% 7.39% 7.38% 7.39% 

LDA 8.93% 8.47% 8.14% 8.16% 8.13% 

LDA + v-CML 7.96% 7.52% 7.18% 7.20% 7.12% 

WCCN 10.06% 9.52% 9.12 % 9.05% 8.90% 

WCCN + v-CML 8.47% 8.03% 7.63% 7.67% 7.44% 

NAP 10.87% 9.86% 9.33% 9.10% 8.97% 

NAP + v-CML 8.77% 8.15% 7.72% 7.68% 7.48% 

Table 6 

EER comparison between v-CML and its initialization channel com- 

pensation techniques on the male speakers. 

Method C1 C2 C3 C4 C5 

NULL 14.22% 14.01% 13.58% 13.33% 13.34% 

LDA + PLDA 10.14% 9.75% 9.28% 8.81% 8.96% 

LDA 11.18% 10.84% 10.46% 10.01% 10.08% 

LDA + v-CML 9.93% 9.48% 9.06% 8.55% 8.61% 

WCCN 11.33% 10.97% 10.58% 10.18% 10.21% 

WCCN + v-CML 9.63% 9.34% 8.91% 8.49% 8.44% 

NAP 11.88% 11.11% 10.58% 9.99% 10.02% 

NAP + v-CML 10.11 % 9.55% 9.20% 8.67% 8.72% 

Fig. 12. Relative EER improvement of LDA+v-CML over LDA, WCCN+v-CML 

over WCCN and NAP+v-CML over NAP on the females. 
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Fig. 13. Relative EER improvement of LDA+v-CML over LDA, WCCN+v-CML 

over WCCN and NAP+v-CML over NAP on the males. 

Fig. 14. DET curves produced by LDA, LDA+v-CML and NULL in the C1 con- 

dition on the females. 
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alue of the hyperparameter 𝜆 varies from infinity to zero, the between-

lass distance and within-class variance are both becoming larger. How-

ver, enlarging the within-class variance is a side effect, which should

e avoided through setting the proper value of 𝜆. As seen from the two

gures, the value of 𝜆 that gives the lowest EER is the point where the

etween-class distance has been enlarged significantly while the within-

lass variance begins to increase quickly. 

.4. Results of v-CML with the d-vector front-end 

In this subsection, d-vector is used as the front-end for all the studied

ethods. 

Tables 5 and 6 list the results of v-CML on the female and male

peakers, respectively. Figs. 12 and 13 plot the relative performance

mprovement of v-CML over different initialization techniques, respec-

ively. From the results, we observe the effectiveness of v-CML. For ex-

mple, LDA+v-CML obtained 0.97% absolute EER improvement over

DA in the C1 condition, and more than 10% relative EER improvement

n the C2 to C5 conditions for the female speakers. Fig. 14 plots the DET

urves of LDA, LDA+v-CML, and NULL in the C1 condition for the fe-

ale speakers. As seen, LDA+CML yielded a better DET performance
17 
han both LDA and NULL. The performance of PLDA is also shown as a

eference. PLDA achieves EERs of 8.27% to 7.39% in the five test con-

itions for the females, and 10.14% to 8.96% for the male speakers. It

s seen that LDA+v-CML achieved better EER performance than PLDA

n the female dataset. 

Note that one can also see from the tables and figures that the per-

ormance of the v-CML with the d-vector front-end is worse than the

-CML with the i-vector front-end. The reasons that the DNN based d-

ector system does not outperform the traditional GMM based i-vector

ystem have been studied extensively. One of the core issues is that the

-vector front-end does speaker classification at the frame level, which

ay not be reliable as a single frame has too little statistic information

bout the speaker. We should point out that that the inferior perfor-

ance of the d-vector front-end to the i-vector front-end does not affect

he validation of the effectiveness of v-CML. 

To study the effect of hyperparameter 𝜆 on the EER performance,

e carried out similar experiments with Section 4.3.2 for LDA+v-CML.

ig. 15 plots the decision score distributions of LDA and LDA+v-CML in

he C5 condition on the females, and Fig. 16 plots the decision score dis-

ributions of NAP and NAP+v-CML in the C1 condition on the females.

rom these two figures, one can see that v-CML yields a smaller within-

lass variance than LDA and NAP while keeping a similar between-class

istance with the latter, which results in a smaller overlap region than

DA and NAP. Fig. 17 is the EER performance of LDA+v-CML with re-

pect to different 𝜆 in the C1 condition. From the figure, one can see

hat the EER of LDA+v-CML has the similar variation tendency with

DA+m-CML with respect to 𝜆. 
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Fig. 15. Score distributions of LDA and LDA+v-CML in the C5 condition on the 

females. 

Fig. 16. Score distributions of NAP and NAP+v-CML in the C1 condition on 

the females. 

Fig. 17. EER of LDA+v-CML with respect to hyperparameter 𝜆 in the C1 con- 

dition on the female speakers. 
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Fig. 18. Score distributions produced by different back-ends. The terms “m- 

CML ” and “v-CML ” are short for “LDA+m-CML ” and “LDA+v-CML ” respec- 

tively. 

Table 7 

Relationship between test accuracy and training time on the females. The 

letters “K ” and “M ” after numbers are short for measurement “thousand ”

and “million ” respectively. 

Number of imposter trials 48K 241K 482K 2.4M 4.8M 

m- 

CML 

EER (%) 4.56 4.54 4.53 4.52 4.49 

Time (in seconds) 35 95 205 762 1445 

v-CML EER (%) 8.06 8.05 7.94 8.03 8.03 

Time (in seconds) 247 982 1747 7950 16410 

Table 8 

Comparison results of CML with different front-ends on the 8-kHz and 

16-kHz systems respectively. 

System Front-ends i-vector x-vector 

Method EER(%) DCF10 −2 EER(%) DCF10 −2 

8KHZ LDA 11.86 0.684 8.53 0.600 

LDA + m-CML 10.02 0.708 8.33 0.598 

LDA + v-CML 10.55 0.682 7.00 0.552 

16KHZ LDA 7.45 0.606 5.41 0.465 

LDA + m-CML 7.45 0.607 5.41 0.465 

LDA + v-CML 6.57 0.517 3.95 0.380 
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.5. Analysis of computational complexity 

To evaluate the relationship between the test accuracy and training

ime complexity, we fixed the number of the true training trials to 10.8

housand, and varied the number of the imposter training trials from 4.8

illion to 48 thousand by down-sampling on the females as shown in

able 7 . From the table, we observe that the EER of CML does not drop
18 
ignificantly by down-sampling, while the training time can be greatly

educed. For clearly, we provide two examples in Fig. 1 . 

.6. Experiments of CML with the x-vector front-end 

It is known that the x-vector front-end, as a DNN based method, has

chieved better performance than the i-vector and d-vector front-ends

n many cases. Here we study the CML with the x-vector front-end, and

ake the CML with the i-vector front-end as a reference. For simplicity,

e employed the development core trials of SITW to train CML, and

ested its effectiveness on the evaluation core trials of SITW. All other

arts of the comparison systems followed the Kaldi ( Povey et al., 2011 )

ecipes of “/kaldi-master/egs/sre16/ ” and “/kaldi-master/egs/sitw/ ”. We

ame the two recipes as the 8-kHz system and 16-kHz system respectively

or simplicity. 

Table 8 lists the comparison results in terms of EER and the minimum

etection cost function with 𝑃 𝑡𝑎𝑟𝑔𝑒𝑡 = 10 −2 ( DCF10 −2 ). We see from the

able that, for the 8-kHz system, when the i-vector front-end is used, m-

ML achieves better performance than v-CML; when the x-vector front-

nd is applied, the performance of v-CML is significantly better than

hat of m-CML. The underlying reason is that the similarity scores of the

-vectors are heavy tailed, while the similarity scores of the i-vectors

ollow a Gaussian distribution. For the 16-kHz system, v-CML always

btains better performance than m-CML. We also see that m-CML is in-

ffective in this evaluation, due to the phenomenon that the similarity
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W  
cores of both the i-vectors and x-vectors are heavy tailed. To support

ur above analysis, we show two examples of the score distributions

roduced from the 8-kHz i-vector system and 16-kHz x-vector system

espectively in Fig. 18 . As a byproduct, it is clear that the CMLs with

he x-vector front-end perform better than their counterparts with the

-vector front-end, which agrees with the recent research observations

n speaker verification. 

. Conclusions and future work 

In this paper, we presented two back-end metric learning methods,

amed m-CML and v-CML, to improve the EER performance of speaker

erification. m-CML aims to increase the between-class distance of the

ecision scores of true and imposter trials while keeping the within-class

ariance unchanged by a regularization term. In comparison, v-CML at-

empts to minimize the within-class variance of the decision scores while

aintaining the between-class distance unchanged by a similar regular-

zation term. The regularization terms are initialized by traditional chan-

el or session compensation techniques. In evaluation, we combined m-

ML with the GMM-UBM/i-vector front-end, and combined v-CML with

he d-vector or x-vector front-end. Experimental results on the NIST SRE

nd SITW datasets demonstrated that the two CML methods outperform

heir initialization methods, and their performance is comparable to that

f the state-of-the-art PLDA back-end. 

Our work in progress is to find a better initialization compensation

echnique so as to further improve the performance of CML in the sys-

em level, given the fact that CML is lower bounded by its initialization

ransformation matrix A 0 . We will also study the generalization ability

f the algorithm in the future. 
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