Speech Communication 118 (2020) 10-20

Contents lists available at ScienceDirect

Speech Communication

journal homepage: www.elsevier.com/locate/specom

Cosine metric learning based speaker verification™ )

Check for
updates

Zhongxin Bai ", Xiao-Lei Zhang®"*, Jingdong Chen®"

aResearch & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
b Center of Intelligent Acoustics and Immersive Communications (CIAIC) and the School of Marine Science and Technology, Northwestern Polytechnical University,
Xi’an, Shaanxi 710072, China

ARTICLE INFO ABSTRACT

Keywords:

Cosine metric learning

Inter-session variability compensation
Speaker verification

The performance of speaker verification depends on the overlap region of the decision scores of true and imposter
trials. Motivated by the fact that the overlap region can be reduced by maximizing the between-class distance
while minimizing the within-class variance of the trials, we present in this paper two cosine metric learning
(CML) back-end algorithms. The first one, named m-CML, aims to enlarge the between-class distance with a
regularization term to control the within-class variance. The second one, named v-CML, attempts to reduce the
within-class variance with a regularization term to prevent the between-class distance from getting smaller.
The regularization terms in the CML methods can be initialized by a traditional channel compensation method,
e.g., the linear discriminant analysis. These two algorithms are combined with front-end processing for speaker
verification. To validate their effectiveness, m-CML is combined with an i-vector front-end since it is good at
enlarging the between-class distance of Gaussian score distributions while v-CML is combined with a d-vector or
x-vector front-end as it is able to reduce the within-class variance of heavy-tailed score distributions significantly.
Experimental results on the NIST and SITW speaker recognition evaluation corpora show that the proposed
algorithms outperform their initialization channel compensation methods, and are competitive to the probabilistic
linear discriminant analysis back-end in terms of performance. For comparison, we also applied the m-CML and
v-CML methods to the i-vector and x-vector front-ends.

1. Introduction (Campbell et al., 2006b; 2006a; Kinnunen and Li, 2010) produced by

GMM-UBM. The DNN-UBM/i-vector front-end (Lei et al., 2014; Kenny

Speaker verification is a task of verifying whether the claimed iden-
tity of a test speaker is true or not. A speaker verification system, in
general, can be divided into two parts: a front-end, which extracts iden-
tity features given a speech signal (an utterance), and a back-end, which
verifies the claim of a test speaker in a trial by calculating the similarity
score of the identity features of the test and enrollment speakers of the
trial (Dehak et al., 2011; Li and Mak, 2015; Hasan and Hansen, 2014).

In the literature, three front-ends have been widely studied: i-vector
front-end based on the Gaussian mixture model and the universal back-
ground model (GMM-UBM) (Reynolds et al., 2000), i-vector front-end
based on deep neural network and UBM (DNN-UBM), and the deep em-
bedding based front-end, such as d-vector (Variani et al., 2014) and x-
vector (Snyder et al., 2017; 2018). The GMM-UBM based i-vector front-
end first models all speakers by a single GMM, and then uses factor anal-
ysis (Dehak et al., 2011) to reduce the dimension of the supervectors

etal., 2014; Richardson et al., 2015a; Campbell, 2014) uses the posterior
probability of senones produced by the acoustic model of a speech recog-
nition system to replace the posterior probability produced by GMM-
UBM at the frame level. The deep embedding based front-end takes the
activations of the last hidden layer or bottleneck layer as the speaker
features (Variani et al., 2014; Richardson et al., 2015b; Wang et al.,
2017; Yaman et al., 2012; Snyder et al., 2017; 2018).

In comparison, commonly used back-ends include the cosine sim-
ilarity scoring (Dehak et al., 2011), the support vector machine
(Cumani and Laface, 2014), and the probabilistic linear discriminant
analysis (PLDA) (Prince and Elder, 2007; Kenny, 2010; Garcia-Romero
and Espy-Wilson, 2011; Li et al., 2017; Mak et al., 2016). Those back-
ends are linear or shallow classifiers, which contain either no or at most
one nonlinear layer. To better capture the nonlinearity of data, DNNs
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with more than one nonlinear layers have been investigated for back-
ends in various ways, e.g. (Stafylakis et al., 2012; Senoussaoui et al.,
2012; Ghahabi and Hernando, 2014; 2017; Tan et al., 2018). For ex-
ample, different combinations of restricted Boltzmann machines were
studied in Stafylakis et al. (2012) and Senoussaoui et al. (2012). Gha-
habi et al. took deep belief networks (DBNs) as a discriminative back-end
(Ghahabi and Hernando, 2014), and further proposed a hybrid system
based on DBN and DNN to discriminatively model each target speaker
(Ghahabi and Hernando, 2017). Tan et al. (2018) applied DNN to com-
pensate decision score shifts caused by strong additive noise.

Because the output of a front-end is both inter-session-dependent and
speaker-dependent, it is necessary to compensate channel- and session-
variability before scoring. Common compensation methods include lin-
ear discriminant analysis (LDA) (Bishop, 2006), within-class covariance
normalization (WCCN) (Hatch et al., 2006), and nuisance attribute pro-
jection (NAP) (Campbell et al., 2006b), which are all linear transfor-
mations. Recently, nonlinear compensation methods have drawn much
attention. For example, Cumani et al. (2017) proposed a nonlinear trans-
formation of i-vectors to make them more suitable for the PLDA back-
end. Zheng Tieran (2018) developed a DNN based dimensionality re-
duction model as an alternative to LDA. Reported results showed that
those back-ends can generate reasonably good performance. However,
those back-end were developed without directly considering the evalua-
tion metrics of speaker verification, such as equal error rate (EER), their
performance may be still suboptimal.

Two classes of methods have been investigated to optimize the evalu-
ation metrics directly. The first one, named back-end metric learning, uses
objective functions that are equivalent to the evaluation metrics. For ex-
ample, the work in Ahmad et al. (2014) and Li et al. (2016) attempts to
maximize the margin between target and imposter trials with the triplet
loss. Fang et al. (2013), also employed neighborhood component analy-
sis to learn a projection matrix, which minimizes the average leave-one-
out k-nearest neighbor classification error. The other class, based on the
so-called end-to-end deep learning, jointly trains the front-end and back-
end of DNN based systems. More specifically, these methods for text-
dependent speaker verification (Heigold et al., 2016; Wan et al., 2017)
learn a deep model, which maps a pair of enrollment and test utterances
directly to a cosine similarity score. In Snyder et al. (2016), David et al.
applied a similar end-to-end framework to jointly train a deep neural
network front-end and a PLDA-like back-end. Both classes of methods
have demonstrated promising results, indicating that directly optimiz-
ing the evaluation metrics like criteria is a proper approach to improving
performance of speaker verification. However, further research is indis-
pensable to unveil the full potential of this approach.

This paper is devoted to the problem of speaker versification with
its focal point placed on the back-end metric learning under the follow-
ing two considerations. First, a metric learning based back-end can be
combined flexibly with a front-end. Second, a back-end metric learn-
ing method may be easily extended to an end-to-end deep learning
method, as if it is optimized by a gradient descent algorithm. We pro-
pose a cosine metric learning (CML) framework based on cosine simi-
larity scoring. CML aims to improve EER directly by minimizing the
overlap region of the decision scores between true and imposter trials.
We present two algorithms, leading to two back-ends, both learn a lin-
ear transformation through gradient descent. The first back-end, named
m-CML, aims to enlarge the between-class distance with a regulariza-
tion term to control the within-class variance. We apply this back-end
to an i-vector front-end since it is good at enlarging the between-class
distance of Gaussian score distributions. The second back-end, called
v-CML, attempts to reduce the within-class variance with a regulariza-
tion term to control the between-class distance. This back-end is com-
bined with a d-vector front-end since it is able to reduce the within-class
variance of heavy-tailed score distributions significantly. The regular-
ization terms in the proposed methods play a very important role on
performance, which can be initialized by a linear transform produced
from a traditional channel compensation method, such as linear dis-
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Fig. 1. Probability distribution of the decision scores produced from a speaker
verification system. “Positive” denotes the true trials, “Negative” denotes the
imposter trials.

criminant analysis (LDA) (Bishop, 2006), within-class covariance nor-
malization (WCCN) (Hatch et al., 2006), nuisance attribute projection
(NAP) (Campbell et al., 2006b), etc. The presented methods are evalu-
ated on the NIST speaker recognition evaluation (SRE) corpora. Results
demonstrate that these methods can combine traditional compensation
methods and the cosine similarity scoring effectively for optimizing EER.

This paper differs from our preliminary work (Bai et al., 2018) in
several major aspects, which include a new v-CML algorithm in this pa-
per, a faster and more stable optimization algorithm of L-BFGS, a further
analysis of the variation of the between-class distance and within-class
variance, and the computational complexity analysis of the CML. Con-
sequently, experimental results in this paper are different from those
reported in Bai et al. (2018).

The rest of this paper is organized as follows. We discuss the mo-
tivation and problem formulation in Section 2. Section 3 presents the
theory and optimization algorithms for cosine metric learning. Experi-
ments are conducted and the results are presented in Section 4. Finally,
Section 5 gives some important conclusions.

2. Motivation

The objective of this work is to optimize EER of a speaker verification
system given a well-trained front-end. It is known that speaker verifica-
tion is a two class classification problem—true trials and imposter trials,
and EER is determined by the overlap region of the decision scores of
the two classes, as illustrated in Fig. 1. It is seen from the figure that the
overlap region of the decision scores relies heavily on the between-class
distance and within-class variance. Consequently, optimizing EER can
be transformed into an equivalent problem of enlarging the between-
class distance while reducing the within-class variance.

To study back-end metric learning, we adopt three representa-
tive front-ends: the GMM-UBM/i-vector front-end, the d-vector front-
end, and the x-vector front-end. The first one contains a GMM-
UBM (Reynolds et al., 2000), which is trained from the pool of all
speech frames of the development data, and a total variability ma-
trix (Dehak et al., 2011) that encompasses both speaker- and channel-
variability. It first extracts a supervector from each utterance, which
is the zero- and first-order Baum-Welch statistics of the utterance, and
then reduces the supervectors to low-dimensional i-vectors by the total
variability matrix. In comparison, the d-vector front-end (Variani et al.,
2014) averages the frame-level features of an utterance produced from
the top hidden layer of a DNN classifier for an utterance-level d-vector.
The DNN is trained to minimize the classification error of speech frames,
where the ground-truth label of a speech frame is the indicator vector of
the speaker to whom the speech frame belongs to. The x-vector (Snyder
et al., 2017; 2018) front-end adopts a similar framework with the d-
vector front-end except that it introduced a statistic pooling layer into
DNN to project variable-length segments into embedding vectors. How-
ever, the feature vectors produced from the three front-ends exhibit very
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Fig. 2. Probability distribution of the cosine similarity scores of i-vectors and
d-vectors.
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Fig. 3. Diagram of the cosine metric learning back-end based system.

different statistical properties. As illustrated in Fig. 2, if the cosine simi-
larity scoring is adopted as the back-end, the probability distribution of
the decision scores produced from a GMM-UBM/i-vector front-end ap-
proximates a normal distribution, and the overlap region of the scores
depends mainly on the between-class distance. But the probability dis-
tribution of the decision scores produced from a d-vector or x-vector
front-end is heavy-tailed (Variani et al., 2014), where the overlap region
may be reduced significantly by reducing the within-class variance.

Motivated by the above facts, as well as the experimental results
from Dehak et al. (2011) that cosine similarity scoring is good enough
in many cases, we present in this paper two back-end metric learning
methods based on cosine similarity scoring. The first one aims to enlarge
the between-class distance while controlling the within-class variance to
be small. The second one attempts to reduce the within-class variance
while maintaining the between-class distance unchanged.

3. Cosine metric learning based back-ends

Let us first provide an overview of the proposed CML based speaker
verification system and then present the objective functions and opti-
mization algorithm of two CML back-ends.

3.1. System overview

The proposed cosine metric learning based speaker verification sys-
tem is illustrated in Fig. 3. In the development stage, we first train a
front-end, and extract an identity feature vector x from each training
utterance by the specified front-end. In this work, we adopt the i-vector
and d-vector based front-ends though many front-ends can be used.
Then, the true and imposter trials are constructed manually from the
identity feature vectors, due to the requirement for training the pro-
posed CML back-ends, where a down-sampling method for constructing
the training set will be given in Section 4.2.2). Finally, we train a CML
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back-end, which produces a linear transformation matrix A. The objec-
tive function of the CML back-end contains a regularization term. This
term should be initialized from an initial compensation transformation
matrix Ay, which can be produced from an existing channel or session
compensation technique, e.g., LDA, WCCN, etc.

In the test stage, we extract the identity feature vectors of a test
trial from the front-end, and then conduct verification by the cosine
similarity scoring as follows:

<Axenmll > Axtest) > 0 (1)

S(X 11 X[ l.A)=—_ '
enroll> Xtest s IAXcnron AR e I =

where X, o and X denote, respectively, the identity feature vectors
of the enrollment and test utterances of the trial, and @ is a decision
threshold.

3.2. Objective functions

In the development stage, we first construct a development set
{x;,yi.1)} []\:' ) from the identity feature vectors of training utterances,
as illustrated in Fig. 3, where (x;, y;, [;) is a training trial and N is the
number of the training trials with x; and y; as a pair of the identity fea-
ture vectors and [; as the ground-truth label of the trial. If x; and y; are

from the same speaker, we set /; = 1; otherwise we set /; = —1. We define
the index sets of the true and imposter trials as pos = {i|/; = 1} ”i . and
neg = {i[l; = -1}~ , respectively.

The optimization problem of CML is given by:

A" = argrfgﬂfA(Xi’yl'sli) @
with fa(x;, y;, ;) defined as
fA(Xf,y;,li)=f({(X;,y,-J;)};;A)+/1QfA 3)

where 7(°) is a loss function that minimizes EER under the cosine simi-
larity scoring S(°), Q 7, isa regularization term controlling the complex-
ity of the learning machine, A > 0 is a tunable hyperparameter, and
A =20 +2Q,, is the learning machine. Because parameter A is a
linear transformation matrix, we adopt a common regularization term
Q= ||A||§. As will be discussed later, the loss function #(-) under the
cosine similarity scoring framework is nonconvex; therefore, we add an
initialization A, to Q/, so as to prevent from bad local minima:

Q, = A - Al @)

where A, is a good linear model produced from any channel or ses-
sion compensation method, see Section 3.2.3 for the compensation tech-
niques in consideration. When A — oo, A approaches to A,. In other
words, the performance of the proposed method is lower-bounded by
its initialization technique.

In the following, we introduce two loss functions #(-), which aims to
enlarge the between-class distance and reduce the within-class variance,
respectively.

3.2.1. m-CML: an objective for enlarging between-class distance
It is easy to see that the means of the decision scores of the true
. . 1 1
and imposter trials are sl Yiepos S, ;3 A) and Tocal Zicneg SXin ¥is A)
respectively. Hence, a natural choice for enlarging the between-class
distance is to solve the following optimization problem:

1

arg max Ipz)SI K;)S S(x;,yisA) — neg] iezn;gS(Xi,yi;A) ®)

which can be changed to minimize the following function:

£== ) Sx.yiA) +a ) Sx.y;:A) (©)
i€pos i€neg

where a = %0 Note that a may also be defined as a free hyperparam-

Ineg| *

eter, but this is beyond the main thrust of this paper.
The loss function in (6) is unbounded. So, optimizing (6) without any
constraints will also enlarge the within-class variance, which is a side
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effect. To prevent this side effect from happening, we substitute (6) into
(2), which gives the following optimization problem:

A" = argrr}inf/:n(xi’Yi’li) M
where
Ryl == Y S&.¥i:A)
i€pos
+a Y SO,y A) + A - Agll3 ®)
i€neg

and the superscript m denotes m-CML.

3.2.2. v-CML: an objective for reducing within-class variance

Minimizing the within-class variances of the decision scores of the
true and imposter trials can be formulated as minimizing the following
function'

D [S(x.yi:A) =

iepos

D IS0y A) -

i€neg

pm

|p09| -1

(C)]

neg,

|neg| —1

where:

z S(XnyHA)

i€pos

10

pos =

|P05|

2 S(XI’YI’A)

i€neg

an

neg = |neg|
To constrain the loss function from its side effect which is the reduction
of the between-class distance, we substitute (9) to (2) and get a new
optimization problem, named v-CML:

Ar = arngE“fX("hth) 12)
where
XY 1) = ) 18X, ¥i3 A) = Spsl?
i€pos
+a Y IS, Y5 A) = Spegl” + AlIA - Al (13)
i€neg
and ¢ = [psI=L

|neg|—1"

3.2.3. Initialization compensation

Many useful linear transformation can be used to initialize the matrix
A, in (4). In this work, we adopt LDA, WCCN or NAP, which are briefly
described as follows.

LDA attempts to find a projection matrix Ay to minimize the intra-
class variance caused by channel effects and meanwhile maximizes the
variance between different speakers. This can be formulated as the fol-
lowing generalized eigenvalue decomposition problem:

S,V = AS,V (14)

where S, and S, are between- and within-class covariance matrices
(Dehak et al., 2011), and A is a diagonal matrix consisting of eigen-
values. The projection matrix A, is composed by the best eigenvectors
(those with highest eigenvalues) of V.

WCCN minimizes the error rate of false acceptance and false rejec-
tion Hatch et al. (2006). It can be explored through the inverse of the
within class covariance matrix W:

S ny
1 1 — —
=5 Y = Y@ -8 -o,)"
s=1 s i3

where o, is the mean of the i-vectors/d-vectors of the s-th speaker. The
compensation matrix A, is then the Cholesky decomposition of W1,
ie.,

5)

Wl =ATA, (16)
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NAP attempts to learn a linear transformation:

Ay =I-RRT 17)

where I is the identity matrix and R is a low rank matrix, consisting of k
eigenvectors of W in (15), which correspond to the k largest eigenvalues
of W.

3.3. Optimization algorithm

We use the L-BFGS algorithm (Liu and Nocedal, 1989)" to solve the
optimization problems in (7) and (12). L-BFGS is a fast gradient descent
algorithm, which enhances the robustness of our algorithms as it does
not need to specify the learning rate manually. But in order to use the
L-BFGS solver, we need to know the gradients of the optimization prob-
lems in (7) and (12), which are as follows:

3.3.1. Gradient of m-CML
The gradient of f/’\“(xi,yi, [;) in (7) with respect to A can be derived
as:

- _ 0S(X;,yi; A)
VIR l) =— Ezp‘, —
+a Yy MAy”A)+2/1(A—AO) (18)
i€neg
where
TATAy,
9S(x;. ¥ A) _ { mm} 19
0A 0A

For simplicity and clarity, we denote, respectively, the numer-

ator and denominator of (19) by u(A)=xTATAy, and v(A)=
\/ xIATAx; \/ yT AT Ay,. It follows then that:
v u(A) _ 1 0u(A)_ u(A) ov(A) 20)
v(A) v(A) 0A v(A)?2 O0A

Ju(A)

A :A(x,-yl.T+y,-xiT) (21)
av(A) \/y AT Ay, \/X TATAX

A 4 Axx 4+ — (22)

L'}
\/xTATAx, \/Y TATAy,
Substituting (19)-(22) to (18) gives the final form of the gradient of

f,;"(X,v,y,-, [,')c

3.3.2. Gradient of v-CML
Similarly, the gradient of f(x;,y;,/;) is:

VfX(X,-,y;J,-)
=‘_€2‘2[s<x,,y‘-;A) Tposl PIRICH y,,A)]
pos JEpos
o [5Gy 1 5 95(x;,¥;3A)
0A |pos| &b 0A
tay Z[S(xl-,y,-;A) ezl D Sy A)
i€neg JEneg
o [5Gy A) 3 95(x;.y;:A)
0A |neg| . 0A
JjEneg

+ 2M(A - Ay) (23)

Using the results in (19)-(22), one can readily derive the final form of
the gradient of fX(x,-,y,»,I,-) in (23).

1 An efficient implementation of the L-BFGS algorithm can be found at
Schmidt (2005).
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Table 1

Test conditions. “EN” denotes the number of enrollment speakers,
“TN” denotes the number of test speech segments, “Trials-N” de-
notes the number of trials, and Ci denotes a test condition with
i being the number of the enrollment speech segments provided
from a speaker which varies from 1 to 5. The letters “K” and “M”
after numbers are short for measurement “thousand” and “mil-
lion” respectively.

Condition Female Male

Name EN TN Trials-N EN TN Trial-N
Cl1 394 2748 1.08M 238 1650 393K
Cc2 390 2748 1.07M 236 1650 389K
c3 381 2748 1.05M 231 1650 381K
C4 362 2748 995K 221 1650 365K
C5 320 2748 879K 201 1650 332K

4. Experiments

In this section, we present some experimental results to validate the
developed algorithms. Specifically, we evaluate the m-CML with the i-
vector front-end as well as the v-CML with the d-vector front-end on
the 2006 and 2008 NIST SRE corpora in Sections 4.1 to 4.5. Then, we
compare m-CML and v-CML given both the x-vector and i-vector front-
ends on the speaker in the wild (SITW) corpus in Section 4.6.

4.1. NIST SRE dataset

The first experiment was conducted on the 8 conversation condi-
tions (8conv condition) of the 2006 and 2008 NIST SRE corpora. The
8conv condition of 2006 NIST SRE contains 402 female speakers and
298 male speakers. The 8conv condition of 2008 NIST SRE contains 395
female speakers and 240 male speakers. Each speaker has 8 conversa-
tions. A speaker utterance in a conversation was approximately 1 to 2
minutes long after removing the silence segments by voice activity de-
tection (VAD), where the VAD label is determined by the ASR transcript.
We split all speech signals into segments with a segment length of 15
seconds.

The 8conv condition of 2006 NIST SRE was used for development.
It was divided into a total of 24043 segments for the female speakers
and 17765 segments for the male speakers, which were used to train
all models including the GMM-UBM/i-vector and d-vector front-ends,
as well as the LDA, WCCN, NAP, and PLDA back-ends.

The 8 conv condition of 2008 NIST SRE was used for enrollment and
test. In the enrollment stage, we selected 1 to 5 segments from the first
conversation of a speaker as his/her enrollment data, which corresponds
to 1 to 5 identity feature vectors after processing by a front-end. We took
the mean of the identity feature vectors as the speaker model. In the test
stage, we selected 1 segment from each of the remaining 7 conversations
of the speaker for test, which corresponds to 7 test identity feature vec-
tors. We took each speaker as a claimant with the remaining speakers
acting as imposters, and rotated through the tests for all the speakers.
We conducted the experiments on the female and male speakers sepa-
rately. The number of trials are summarized in Table 1.

4.2. Experimental Setup on NIST SRE

The frame length and frame shift were set, respectively, to 25 and
10 ms. The 19 Mel frequency cepstral coefficients (MFCCs), 13 rel-
ative spectral filtered perceptual linear predictive cepstral coefficients
(RASTA-PLP) and log energy, as well as their delta and double delta are
used as the acoustic features, resulting a feature vector of 99 dimensions
per frame (Chang and Wang, 2017).

4.2.1. Front-ends
The GMM-UBM/i-vector and d-vector were used as two front-ends.
For the GMM-UBM/i-vector front-end, we employed the MSR Identity
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Fig. 4. Diagram for constructing training trials. Each circle or triangle stands
for an identity feature vector extracted from a speech segment by a front-end.

Toolbox (Sadjadi et al., 2013) as its implementation. Feature warping
with a window size of 3 seconds was applied after the acoustic fea-
ture extraction. The number of Gaussian components of the gender-
dependent GMM-UBM was set to 2048 (Chang and Wang, 2017). The
dimension of the total variability matrix was set to 400.

For the d-vector front-end, the global cepstral mean and variance
normalization was applied after the acoustic feature extraction. Gender-
dependent feedforward neural networks were used as the DNN models.
Each DNN model consists of 4 hidden layers with 512 hidden units per
layer. We expanded each frame with a context window of 51 frames
that centered at the current frame. The output dimension of the DNN
was set to 402 for the female speakers, and 298 for the male speakers,
which is the same as the number of the speakers in the development set.
The d-vector of a speech segment is the average of the activations of the
speech frames derived from the last DNN hidden layer.

4.2.2. Back-ends

For the m-CML and v-CML back-ends, we first extracted identity fea-
ture vectors from a front-end, and then constructed the training trials
from the identity feature vectors. It is costly to use all pairs of speech
segments for training, since the number of training trials in this case
N(N -1)/2 where N is 24043 for the female speakers and 17765 for
the male speakers. Here we developed a sampling strategy to balance
the training accuracy and computational complexity as shown in Fig. 4.
Specifically, to simulate the real-world test environments that the enroll-
ment and test speech signals of a test trial may have different types of
channel noise, we randomly selected 7 identity feature vectors from each
conversation and combined them with the 7 identity feature vectors that
came from the other 7 conversations respectively, which corresponds to
28 true trials. The construction of the true trials is as follows. As shown
in the left-hand side of Fig. 4, each circle represents an identity vec-
tor. We first selected 7 identity vectors from each conversation where
the identity vectors in the same row belong to the same conversation.
Eight conversations of the speaker amount to 56 identity vectors. Then,
the identity vectors in the box of the same color are grouped into non-
overlapping trials. For example, we can obtain 7 trials from the red boxes
by combining the 7 identity vectors in the red horizontal box with the 7
identity vectors in the red vertical box in sequence. The above example is
repeated to other boxes. Finally, we obtain 7 + 6 + ... + 1 = 28 true trials
for each speaker. Similarly, we randomly selected 8 identity feature vec-
tors from each conversation of a speaker and combined them with the 8
identity feature vectors that came from the other 8 conversations of any
other speaker respectively, which corresponds to 64 imposter trials. As a
result, the number of the training trials has been reduced to 5,169,720
for the female speakers and 2,840,536 for the male speakers. As will
be analyzed in Section 4.5, we can further reduce the computational
complexity dramatically by randomly down-sampling the imposter tri-
als without suffering from a significant performance degradation. To
summarize, in our experiments, the numbers of the training trials after
down-sampling are listed in Table 2.
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Table 2
Number of training trials.
Female Male
True trials ~ Imposter trials  True trials ~ Imposter trials
m-CML 10851 48289 7990 26220
v-CML 10865 48394 7990 26220
Table 3

EER comparison between m-CML and its initialization channel
compensation techniques on the female speakers.

Method Cl C2 Cc3 C4 C5

NULL 9.73%  6.63%  527% 4.62%  4.12%
LDA+PLDA 411%  3.76%  3.50%  3.50%  3.44%
LDA 6.88%  5.09% 437% 4.05%  3.74%
LDA+m-CML 4.58%  3.70% 3.37% 3.30%  3.08%
WCCN 5.34%  427% 3.74%  3.65%  3.37%
WCCN+m-CML  4.72%  3.97%  3.58%  3.52%  3.29%
NAP 5.57% 4.74%  435% 4.20%  3.94%
NAP+m-CML 4.87%  4.28%  3.98%  3.89%  3.67%

LDA, WCCN or NAP was used to initialize CML. We first tuned the
hyperparameters of LDA and NAP by grid search from 50 to their maxi-
mum values with a step size of 50, and then selected their best hyperpa-
rameters in terms of EER. Note that the maximum output dimension of
LDA can not be larger than N — 1, where N is the number of the training
speakers. Specifically, for the GMM-UBM/i-vector front-end, the output
dimension of LDA was set to 200 for both the female and male speak-
ers; the corank number of NAP was set to 350 for the female speakers
and 100 for the male speakers. For the d-vector front-end, the output di-
mension of LDA was set to 400 for the female speakers and 297 for the
male speakers; the corank number of NAP was set to 100 for both the
female and male speakers. The m-CML with the three initialization tech-
niques are denoted, respectively, as LDA + m-CML, WCCN + m-CML, and
NAP +m-CML. The v-CML with the three initialization techniques are
denoted, respectively, as LDA +v-CML, WCCN +v-CML, and NAP +v-
CML.

The performance of the presented CML methods is evaluated in terms
of EER and detection error tradeoff (DET) curve. For comparison, we
also evaluate the performance of LDA, WCCN and NAP under the cosine
similarity scoring framework. Also presented is the performance of the
cosine similarity scoring back-end without any channel or session com-
pensation techniques, denoted as “NULL”, as well as the performance of
the state-of-the-art LDA +PLDA back-end for comparison. The parame-
ter settings of LDA and NAP are the same as those in the CML methods.

4.3. Results for m-CML with the i-vector front-end

In this subsection, GMM-UBM/i-vector is used as front-end for all
studied methods.

4.3.1. Main results

Table 3 lists the EER results on the female speakers. From the table,
one can see that the proposed CML methods outperform their initializa-
tion methods. Fig. 5 plots the relative performance improvement of the
m-CML methods over their initialization methods. As seen, LDA + m-
CML obtained an EER of relatively 33.4% lower than LDA in the C1
condition, and more than 15% in the C1 to C5 conditions. WCCN + CML
and NAP + CML slightly outperform, respectively, WCCN and NAP.

Table 4 lists the EER results on the male speakers. Fig. 6 shows the
relative performance improvement of the m-CML methods over their
initialization methods. From the table and the figure, one can see that
the experimental conclusion is similar with that on the female speakers.
For example, LDA + m-CML achieves 16.3% relative improvement over
LDA, and NAP + m-CML achieves 20.4% relative improvement over NAP
in the C1 condition.
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Table 4
EER comparison between m-CML and its initialization channel
compensation techniques on the male speakers.

Method Cl C2 C3 C4 C5
NULL 7.72%  590%  5.07% 4.61%  4.63%
LDA+PLDA 5.29%  4.90%  4.72%  4.40%  4.40%
LDA 6.62%  5.51%  4.89%  4.49%  4.55%
LDA+m-CML 5.54%  4.85% 4.47% 4.16%  4.20%
WCCN 5.71%  4.92%  4.56%  4.24%  4.28%
WCCN+m-CML  5.46%  4.83%  4.51%  4.20%  4.26%
NAP 7.16%  5.74%  4.95%  4.54%  4.59%
NAP+m-CML 5.70%  4.88%  4.42% 4.15%  4.19%
35
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Fig. 5. Relative performance improvement of LDA+m-CML over LDA,
WCCN +m-CML over WCCN, and NAP +m-CML over NAP respectively on the
female speakers.
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Fig. 6. Relative EER improvement of LDA + m-CML over LDA, WCCN + m-CML
over WCCN, and NAP +m-CML over NAP respectively on the male speakers.

The performance of the state-of-the-art LDA +PLDA back-end is also
presented in Tables 3 and 4 as a reference. Note that it is not fair or
proper to compare m-CML with the LDA + PLDA back-end directly since
m-CML aims to improve the performance of existing channel or session
compensation methods under the cosine similarity scoring framework.
The reasons that we focus on applying CML to the cosine similarity scor-
ing without considering LDA 4+ PLDA as a baseline are multiple, includ-
ing but not limited to: 1) the cosine similarity scoring is not simpler than
PLDA,; 2) it does not rely on any model assumption and hence it can be
improved, e.g., with the use of some deep embedding based front-ends
(Garcia-Romero et al., 2019; Xie et al., 2019).

As seen, LDA +PLDA achieved EERs of 4.11% to 3.44% for the fe-
male speakers, and 5.29% to 4.40% from the C1 to C5 conditions for the
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Fig. 7. DET curves produced by LDA, LDA + m-CML, and NULL in the C1 con-
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Fig. 8. Score distributions of LDA and LDA +m-CML in the C1 condition on the
females.

male speakers. m-CML obtained better performance than LDA +PDLA in
the C2 to C5 conditions. For example, LDA +m-CML achieved approxi-
mately 10.5% relative improvement in the C5 condition on the female
speakers.

The DET curves of both LDA+m-CML and LDA in the female C1
condition are plotted in Fig. 7. One can see that LDA + m-CML yields a
better DET performance than LDA.

4.3.2. Effects of hyperparameter A on performance

Because the effects of 4 on both genders are similar, we show only
the results for the female speakers. Fig. 8 plots the decision score distri-
butions of LDA and LDA 4+ m-CML. From the figure, one can make the
following observations. First, LDA + m-CML yielded a larger between-
class distance than LDA. Second, although it produced a larger within-
class variance of the decision scores of the imposter trials than LDA,
LDA +m-CML yielded a smaller overlap region than LDA. As a result,
LDA 4+ m-CML has a smaller EER than LDA, which is justifies the moti-
vation of this work as well as the feasibility of the presented methods.

Fig. 9 plots the EER as a function of the hyperparameter 4 in the C1
condition. It is seen that the EER curve of LDA + m-CML first decreases
and then increases along with the value of A. The underlying reason can
be explained as follows. If the value of 4 is small, the regularization term
in (4) does not play an important role. Consequently, CML does not only
increase the between-class distance, but also the within-class variance as
a side effect. As a result, the EER performance is not improved compared
to its initialization. At the extreme case when the value of 1 is close to
zero, the regularization term may be neglected, leading to performance
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Fig. 9. EER of LDA +m-CML and LDA as a function of the hyperparameter 4 in
the C1 condition for the female speakers.
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Fig. 10. Between-class distance of LDA + m-CML as a function of the hyperpa-
rameter 4 in the C1 condition for the female speakers.
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Fig. 11. Within-class variance of LDA+m-CML as a function of the hyperpa-
rameter A in the C1 condition for the female speakers.

degradation. On the other hand, if the value of A is too large, CML ap-
proaches to its initialization point. The same experimental phenomenon
was observed for WCCN + CML and NAP + CML.

The aforementioned experimental phenomena can be further ex-
plained by analyzing the results in Figs. 10 and 11 jointly, where the
two figures show how the between-class distance and within-class vari-
ance vary along with the value of A, respectively. As seen, when the
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Table 5
EER comparison between v-CML and its initialization channel com-
pensation techniques on the female speakers.

Method Cl C2 C3 C4 C5
NULL 13.24% 12.90% 12.51% 12.48% 12.33%
LDA+PLDA 8.27% 7.74% 7.39% 7.38% 7.39%
LDA 8.93% 8.47% 8.14% 8.16% 8.13%
LDA+v-CML 7.96% 7.52% 7.18% 7.20% 7.12%
WCCN 10.06% 9.52% 9.12 % 9.05% 8.90%
WCCN+v-CML 8.47% 8.03% 7.63% 7.67% 7.44%
NAP 10.87% 9.86% 9.33% 9.10% 8.97%
NAP+v-CML 8.77% 8.15% 7.72% 7.68% 7.48%
Table 6

EER comparison between v-CML and its initialization channel com-
pensation techniques on the male speakers.

Method C1 Cc2 C3 C4 C5
NULL 14.22% 14.01%  13.58%  13.33%  13.34%
LDA+PLDA 10.14% 9.75% 9.28% 8.81% 8.96%
LDA 11.18% 10.84%  10.46%  10.01%  10.08%
LDA+v-CML 9.93% 9.48% 9.06% 8.55% 8.61%
WCCN 11.33% 1097%  10.58%  10.18%  10.21%
WCCN+v-CML  9.63% 9.34% 8.91% 8.49% 8.44%
NAP 11.88% 11.11%  10.58%  9.99% 10.02%
NAP+v-CML 10.11 %  9.55% 9.20% 8.67% 8.72%
20 T
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Fig. 12. Relative EER improvement of LDA + v-CML over LDA, WCCN + v-CML
over WCCN and NAP + v-CML over NAP on the females.

value of the hyperparameter A varies from infinity to zero, the between-
class distance and within-class variance are both becoming larger. How-
ever, enlarging the within-class variance is a side effect, which should
be avoided through setting the proper value of A. As seen from the two
figures, the value of A that gives the lowest EER is the point where the
between-class distance has been enlarged significantly while the within-
class variance begins to increase quickly.

4.4. Results of v-CML with the d-vector front-end

In this subsection, d-vector is used as the front-end for all the studied
methods.

Tables 5 and 6 list the results of v-CML on the female and male
speakers, respectively. Figs. 12 and 13 plot the relative performance
improvement of v-CML over different initialization techniques, respec-
tively. From the results, we observe the effectiveness of v-CML. For ex-
ample, LDA + v-CML obtained 0.97% absolute EER improvement over
LDA in the C1 condition, and more than 10% relative EER improvement
in the C2 to C5 conditions for the female speakers. Fig. 14 plots the DET
curves of LDA, LDA +v-CML, and NULL in the C1 condition for the fe-
male speakers. As seen, LDA + CML yielded a better DET performance
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Fig. 13. Relative EER improvement of LDA + v-CML over LDA, WCCN + v-CML
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Fig. 14. DET curves produced by LDA, LDA +v-CML and NULL in the C1 con-
dition on the females.

than both LDA and NULL. The performance of PLDA is also shown as a
reference. PLDA achieves EERs of 8.27% to 7.39% in the five test con-
ditions for the females, and 10.14% to 8.96% for the male speakers. It
is seen that LDA + v-CML achieved better EER performance than PLDA
in the female dataset.

Note that one can also see from the tables and figures that the per-
formance of the v-CML with the d-vector front-end is worse than the
m-CML with the i-vector front-end. The reasons that the DNN based d-
vector system does not outperform the traditional GMM based i-vector
system have been studied extensively. One of the core issues is that the
d-vector front-end does speaker classification at the frame level, which
may not be reliable as a single frame has too little statistic information
about the speaker. We should point out that that the inferior perfor-
mance of the d-vector front-end to the i-vector front-end does not affect
the validation of the effectiveness of v-CML.

To study the effect of hyperparameter A on the EER performance,
we carried out similar experiments with Section 4.3.2 for LDA + v-CML.
Fig. 15 plots the decision score distributions of LDA and LDA + v-CML in
the C5 condition on the females, and Fig. 16 plots the decision score dis-
tributions of NAP and NAP +v-CML in the C1 condition on the females.
From these two figures, one can see that v-CML yields a smaller within-
class variance than LDA and NAP while keeping a similar between-class
distance with the latter, which results in a smaller overlap region than
LDA and NAP. Fig. 17 is the EER performance of LDA + v-CML with re-
spect to different A in the C1 condition. From the figure, one can see
that the EER of LDA +v-CML has the similar variation tendency with
LDA + m-CML with respect to 4.
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Fig. 15. Score distributions of LDA and LDA + v-CML in the C5 condition on the
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Fig. 17. EER of LDA + v-CML with respect to hyperparameter A in the C1 con-
dition on the female speakers.

4.5. Analysis of computational complexity

To evaluate the relationship between the test accuracy and training
time complexity, we fixed the number of the true training trials to 10.8
thousand, and varied the number of the imposter training trials from 4.8
million to 48 thousand by down-sampling on the females as shown in
Table 7. From the table, we observe that the EER of CML does not drop
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Fig. 18. Score distributions produced by different back-ends. The terms “m-
CML” and “v-CML” are short for “LDA+m-CML” and “LDA +v-CML” respec-
tively.

Table 7

Relationship between test accuracy and training time on the females. The
letters “K” and “M” after numbers are short for measurement “thousand”
and “million” respectively.

Number of imposter trials 48K 241K 482K 2.4M 4.8M
m- EER (%) 456 454 4,53 4,52 4.49
CML Time (in seconds) 35 95 205 762 1445
v-CML  EER (%) 8.06 8.05 7.94 8.03 8.03

Time (in seconds) 247 982 1747 7950 16410
Table 8

Comparison results of CML with different front-ends on the 8-kHz and
16-kHz systems respectively.

System Front-ends i-vector x-vector
Method EER(%) DCF10~2 EER(%) DCF10~2
8KHZ LDA 11.86 0.684 8.53 0.600
LDA+m-CML  10.02 0.708 8.33 0.598
LDA+v-CML 10.55 0.682 7.00 0.552
16KHZ  LDA 7.45 0.606 5.41 0.465
LDA+m-CML  7.45 0.607 5.41 0.465
LDA+v-CML 6.57 0.517 3.95 0.380

significantly by down-sampling, while the training time can be greatly
reduced. For clearly, we provide two examples in Fig. 1.

4.6. Experiments of CML with the x-vector front-end

It is known that the x-vector front-end, as a DNN based method, has
achieved better performance than the i-vector and d-vector front-ends
in many cases. Here we study the CML with the x-vector front-end, and
take the CML with the i-vector front-end as a reference. For simplicity,
we employed the development core trials of SITW to train CML, and
tested its effectiveness on the evaluation core trials of SITW. All other
parts of the comparison systems followed the Kaldi (Povey et al., 2011)
recipes of “/kaldi-master/egs/sre16/” and “/kaldi-master/egs/sitw/”. We
name the two recipes as the 8-kHz system and 16-kHz system respectively
for simplicity.

Table 8 lists the comparison results in terms of EER and the minimum
detection cost function with P, = 107> (DCF10~2). We see from the
table that, for the 8-kHz system, when the i-vector front-end is used, m-
CML achieves better performance than v-CML; when the x-vector front-
end is applied, the performance of v-CML is significantly better than
that of m-CML. The underlying reason is that the similarity scores of the
x-vectors are heavy tailed, while the similarity scores of the i-vectors
follow a Gaussian distribution. For the 16-kHz system, v-CML always
obtains better performance than m-CML. We also see that m-CML is in-
effective in this evaluation, due to the phenomenon that the similarity
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scores of both the i-vectors and x-vectors are heavy tailed. To support
our above analysis, we show two examples of the score distributions
produced from the 8-kHz i-vector system and 16-kHz x-vector system
respectively in Fig. 18. As a byproduct, it is clear that the CMLs with
the x-vector front-end perform better than their counterparts with the
i-vector front-end, which agrees with the recent research observations
on speaker verification.

5. Conclusions and future work

In this paper, we presented two back-end metric learning methods,
named m-CML and v-CML, to improve the EER performance of speaker
verification. m-CML aims to increase the between-class distance of the
decision scores of true and imposter trials while keeping the within-class
variance unchanged by a regularization term. In comparison, v-CML at-
tempts to minimize the within-class variance of the decision scores while
maintaining the between-class distance unchanged by a similar regular-
ization term. The regularization terms are initialized by traditional chan-
nel or session compensation techniques. In evaluation, we combined m-
CML with the GMM-UBM/i-vector front-end, and combined v-CML with
the d-vector or x-vector front-end. Experimental results on the NIST SRE
and SITW datasets demonstrated that the two CML methods outperform
their initialization methods, and their performance is comparable to that
of the state-of-the-art PLDA back-end.

Our work in progress is to find a better initialization compensation
technique so as to further improve the performance of CML in the sys-
tem level, given the fact that CML is lower bounded by its initialization
transformation matrix A,. We will also study the generalization ability
of the algorithm in the future.
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