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a b s t r a c t

Speaker recognition is a task of identifying persons from their voices. Recently, deep learning has
dramatically revolutionized speaker recognition. However, there is lack of comprehensive reviews
on the exciting progress. In this paper, we review several major subtasks of speaker recognition,
including speaker verification, identification, diarization, and robust speaker recognition, with a focus
on deep-learning-based methods. Because the major advantage of deep learning over conventional
methods is its representation ability, which is able to produce highly abstract embedding features from
utterances, we first pay close attention to deep-learning-based speaker feature extraction, including
the inputs, network structures, temporal pooling strategies, and objective functions respectively, which
are the fundamental components of many speaker recognition subtasks. Then, we make an overview
of speaker diarization, with an emphasis of recent supervised, end-to-end, and online diarization.
Finally, we survey robust speaker recognition from the perspectives of domain adaptation and speech
enhancement, which are two major approaches of dealing with domain mismatch and noise problems.
Popular and recently released corpora are listed at the end of the paper.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

It is known that a speaker’s voice contains personal traits of
he speaker, given the unique pronunciation organs and speaking
anner of the speaker, e.g. the unique vocal tract shape, larynx
ize, accent, and rhythm (Kinnunen & Li, 2010). Therefore, it is
ossible to identify a speaker from his/her voice automatically
ia a computer. This technology is termed as automatic speaker
ecognition, which is the core topic of this paper. We do not
iscuss speaker recognition by humans. Speaker recognition is
fundamental task of speech processing, and finds its wide

pplications in real-world scenarios. For example, it is used for
he voice-based authentication of personal smart devices, such
s cellular phones, vehicles, and laptops. It guarantees the trans-
ction security of bank trading and remote payment. It has been
idely applied to forensics for investigating a suspect to be guilty
r non-guilty (Campbell et al., 2009; Champod & Meuwly, 2000;
innunen & Li, 2010), or surveillance and automatic identity
agging (Togneri & Pullella, 2011). It is important in audio-based
nformation retrieval for broadcast news, meeting recordings and
elephone calls. It can also serve as a frontend of automatic speech
ecognition (ASR) for improving the transcription performance of
ulti-speaker conversations.
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E-mail addresses: zxbai@mail.nwpu.edu.cn (Z. Bai),

iaolei.zhang@nwpu.edu.cn (X.-L. Zhang).
ttps://doi.org/10.1016/j.neunet.2021.03.004
893-6080/© 2021 Elsevier Ltd. All rights reserved.
The research on speaker recognition can be dated back to at
least 1960s (Pruzansky & Mathews, 1964). In the following forty
years, many advanced technologies promoted the development of
speaker recognition. For example, a number of acoustic features
(e.g. the linear predictive cepstral coefficients, the perceptual
linear prediction coefficient, and the mel-frequency cepstral co-
efficients) and template models (e.g. vector quantization, and
dynamic time warping) have been applied, see Kinnunen and
Li (2010) for the details. Later on, Reynolds, Quatieri, and Dunn
(2000) proposed the Gaussian mixture model based universal
background model (GMM-UBM), which has been the founda-
tion of speaker recognition for more than ten years since year
2000. Several representative models based on GMM-UBM have
been developed, including the applications of support vector ma-
chines (Campbell, Sturim, & Reynolds, 2006) and joint factor anal-
ysis (Kenny, Boulianne, Ouellet, & Dumouchel, 2007). Among the
models, the GMM-UBM/i-vector frontend (Dehak, Kenny, Dehak,
Dumouchel, & Ouellet, 2010) with probabilistic linear discrim-
inant analysis (PLDA) backend (Garcia-Romero & Espy-Wilson,
2011; Kenny, 2010) provided the state-of-the-art performance for
several years, until the new era of deep learning based speaker
recognition.

Recently, motivated by the powerful feature extraction capa-
bility of deep neural networks (DNNs), a lot of deep learning
based speaker recognition methods were proposed (Lei, Scheffer,
Ferrer, & McLaren, 2014; Snyder, Garcia-Romero, Sell, Povey, &
Khudanpur, 2018; Variani, Lei, McDermott, Moreno, & Gonzalez-
Dominguez, 2014) right after the great success of deep learning
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http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.03.004&domain=pdf
mailto:zxbai@mail.nwpu.edu.cn
mailto:xiaolei.zhang@nwpu.edu.cn
https://doi.org/10.1016/j.neunet.2021.03.004


Z. Bai and X.-L. Zhang Neural Networks 140 (2021) 65–99

t
t
c
B
s
p

r
d
r
t
t
a
a
e
a
r
d
c
t

Fig. 1. Flowcharts of speaker verification, speaker identification, and speaker diarization. Fig. A describes speaker verification, which is a task of verifying whether a
test utterance and an enrollment utterance are uttered by the same speaker via comparing the similarity score of the utterances with a pre-defined threshold. Fig.
B describes speaker identification, which is a task of determining the speaker identity of a test utterance from a set of speakers. If the utterance must be produced
from the set of the speakers, then it is a closed set identification problem; otherwise, it is an open set problem. Fig. C describes speaker diarization, which addresses
the problem of ‘‘who spoke when’’, i.e., partitioning a conversation recording into several speech recordings, each of which belongs to a single speaker.
based speech recognition, which significantly boosts the per-
formance of speaker recognition to a new level, even in wild
environments (McLaren, Ferrer, Castan, & Lawson, 2016; Nagrani,
Chung, & Zisserman, 2017).

In this survey article, we give a comprehensive overview to
he deep learning based speaker recognition methods in terms of
he vital subtasks and research topics, including speaker verifi-
ation, identification, diarization, and robust speaker recognition.
y doing the survey, we hope to provide a useful resource for the
peaker recognition community. The main contributions of this
aper are summarized as follows:

• We summarize deep learning based speaker feature extrac-
tion techniques for speaker verification and identification,
from the aspects of inputs, network structures, temporal
pooling strategies, and objective functions which are also
the fundamental components of many other speaker recog-
nition subtasks beyond speaker verification and identifica-
tion.

• We make an overview to the deep learning based speaker
diarization, with an emphasis of recent supervised, end-to-
end, and online diarization.

• We survey robust speaker recognition from the perspectives
of domain adaptation and speech enhancement, which are
two major approaches to deal with domain mismatch and
noise problems.

In the last two decades, many excellent overviews on speaker
ecognition have been published. This paper is fundamentally
ifferent from previous overviews. First, this paper focuses on the
ecently development of deep learning based speaker recognition
echniques, while most previous overviews are based on tradi-
ional speaker recognition methods Anguera et al. (2012), Fazel
nd Chakrabartty (2011), Hansen and Hasan (2015), Kinnunen
nd Li (2010), Reynolds (2002), Togneri and Pullella (2011), Wu
t al. (2015). Although Das, Tian, Kinnunen, and Li (2020), Irum
nd Salman (2019) summarized deep learning based speaker
ecognition methods in certain aspects, our paper summarizes
ifferent subtasks and topics from new perspectives. Specifi-
ally, Das et al. (2020) present an overview to the potential
hreats of adversarial attacks to speaker verification as well as
66
the spoofing countermeasures, which is not the focus of this
overview. We provide a broad and comprehensive overview to
a wide aspect of speaker verification, speaker diarization, domain
adaptation, most of which have not been mentioned in Irum and
Salman (2019).

This article is targeted at three categories of readers: The
beginners who wish to study speaker recognition, the researchers
who want to learn the whole picture of speaker recognition based
on deep learning, and the engineers who need to understand
or implement specific algorithms for their speaker recognition
related products. In addition, we assume that the readers have
basic knowledge of speech signal processing, machine leaning
and pattern recognition.

The rest of the survey is organized as follows. In Section 2,
we give a general overview and define some notations. In
Sections 3 to 10, we survey the deep learning based speaker
recognition methods in various aspects. In Section 11, we summa-
rize some speaker recognition challenges and publicly available
data. Finally, we conclude this article in Section 12.

2. Overview and scope

This overview summarizes four major research branches of
speaker recognition, which are speaker verification, identifica-
tion, diarization, and robust speaker recognition respectively. The
flowcharts of the first three branches are described in Fig. 1, while
robust speaker recognition deals with the challenges of noise and
domain mismatch problems. The contents of the overview are
organized in Fig. 2, which are described briefly as follows.

Speaker verification aims at verifying whether an utterance is
pronounced by a hypothesized speaker based on his/her pre-
recorded utterances. Speaker verification algorithms can be cate-
gorized into stage-wise and end-to-end ones. A stage-wise speaker
verification system usually consists of a front-end for the ex-
traction of speaker features and a back-end for the similarity
calculation of speaker features. The front-end transforms an ut-
terance in time domain or time–frequency domain into a high-
dimensional feature vector. It accounts for the recent advantage
of the deep learning based speaker recognition. We survey the
research on the front-end comprehensively in Sections 3 to 7. The
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Fig. 2. Overview of deep learning based speaker recognition.
ack-end first calculates a similarity score between enrollment
nd test speaker features and then compare the score with a
hreshold:

(xe, xt;w)
H0
≷
H1

ξ (1)

where f (·) denotes a function for calculating the similarity, w
tands for the parameters of the back-end, xe and xt are the en-
ollment and test speaker features respectively, ξ is the threshold,
0 represents the hypothesis of xe and xt belonging to the same

speaker, and H1 is the opposite hypothesis of H0. One of the major
responsibilities of the back-end is to compensate the channel
variability and reduce interferences, e.g. language mismatch. Be-
cause most back-ends aim at alleviating the interferences, which
belongs to the problem of robust speaker recognition, we put the
overview of the back-ends in Section 10.

In contrast to the stage-wise techniques, end-to-end speaker
verification takes a pair of speech utterances as the input, and
produces their similarity score directly. Because a fundamental
difference between the end-to-end speaker verification and the
deep embedding techniques in the stage-wise speaker verifica-
tion is the loss function, we mainly summarize the loss functions
of the end-to-end speaker verification in Section 8.

Speaker identification aims at detecting the speaker identity
of a test utterance xt from an enrollment database {xek|k =

, 2, . . . , K } by1:
∗

= argmax
k

{f (xe1, x
t
;w), f (xe2, x

t
;w), . . . , f (xeK , x

t
;w)} (2)

where K > 1 denotes the number of the enrollment speakers.
If xt can never be out of the K registered speakers, then the
speaker identification problem is a closed set problem; otherwise,
it is an open set problem. Comparing (1) with (2), we see that
speaker verification is a special case of the open set speaker
identification problem with K = 1, therefore, it is possible that
the fundamental techniques of speaker identification and verifi-
cation are similar, as what we have observed in Flemotomos and
Dimitriadis (2020), Hong, Wu, Wang, and Huang (2020a), Ji, Cai,
and Bo (2018), Wang, Wang, Law, Rudzicz, and Brudno (2019) and
Yadav and Rai (2018). Taking this point into consideration, we
make a joint overview to speaker verification and identification
with an emphasis on the former.

1 Although some work used all speakers in a given database for both training
nd test which is essentially regarded as a close-set speaker classification
roblem (Nagrani et al., 2017), most real world speaker recognition systems
ust be able to ‘‘enroll’’ and ‘‘test’’ new speakers dynamically.
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Table 1
Organization of the contents of this paper.
Sections Contents

1, 2 Introduction and brief overview.
3, 4, 5, 6, 7 Speaker feature extraction.
8 The loss functions of the end-to-end speaker verification.
9 Speaker diarization.
10 Robust speaker recognition.
11 Benchmark corpora.
12 Conclusions and discussions.

Speaker diarization addresses the problem of ‘‘who spoke
when’’, which is a process of partitioning a conversation recording
into several speech recordings, each of which belongs to a single
speaker. As shown in Fig. 2, a conventional framework of speaker
diarization is stage-wise with multiple modules. Although the
stage-wise speaker verification and diarization share some com-
mon modules, e.g. voice activity detection and speaker feature
extraction, they have many differences. First, speaker verification
assumes that each utterance belongs to a single speaker, while
the number of speakers of a conversation in speaker diarization
changes case by case. Moreover, speaker verification has an
explicit registration/enrollment procedure, while speaker diariza-
tion intends to detect speakers on-the-fly without an enrollment
procedure. At last, overlapped speech is one of the biggest chal-
lenges of speaker diarization, while speaker verification usually
assumes that the enrollment or test utterance contains a single
speaker only. Therefore, we focus on reviewing the work on the
above distinguished properties of the stage-wise speaker diariza-
tion in Section 9. Recently, end-to-end speaker diarization, which
outputs the diarization result directly, attracted much attention.
Online speaker diarization, which meets the requirement of real-
world applications, is also an emerging direction. Furthermore,
multimodal speaker diarization, which integrates speech with
video or text signals, was also studied extensively. We review
the aforementioned end-to-end, online, and multimodal speaker
diarization techniques in Section 9.

Besides, speech is easily contaminated by additive noise, re-
verberation, channel distortions. Therefore, robust speaker recog-
nition is also one of the main topics. It mainly includes speech
enhancement and domain adaptation techniques, which will be
summarized in detail in Section 10. At last, we survey benchmark
corpora in Section 11.

To summarize, the aforementioned contents will be organized
as listed in Table 1. The notations are summarized in Table 2.
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Fig. 3. The traditional GMM/i-vector framework. The term MFCC denotes Mel-frequency cepstral coefficient.
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Table 2
Summary of the notations in this paper.
Notation Description

R Set of real numbers
Rd Set of d-dimensional real-valued vectors
Rd1×d2 Set of d1 × d2 real-valued matrices

Y Set of acoustic features
H Set of the last frame-level hidden layer’s outputs
E Set of embeddings
X Set of the inputs to loss functions
L The symbol of loss functions

y A frame acoustic feature
h A hidden feature of the last frame-level layer’s output
e An embedding feature of the embedding layer’s output
x An input feature to loss functions
u An output of the temporal pooling layer

t, T Index and total number of frames in an utterance
i, I Index and total number of the utterance
j, J Index and total number of speakers in the training set

∥ · ∥ The ℓ2 norm
⊙ The Hadamard product
δ(·) Indicator function
(·)T The transform of matrix or vector

3. Speaker feature extraction with DNN/i-vector

In this section, we first introduce two main streams of the
eep learning based improvement to the i-vector framework in
ection 3.1, and then comprehensively review the two streams
n Sections 3.2 and 3.3 respectively. Finally, we make some dis-
ussions to the DNN/i-vector in Section 3.4.

.1. From GMM/i-vector to DNN/i-vector

The performance of the conventional GMM-UBM based
peaker recognition is largely affected by the speaker and channel
ariations of utterances. To address this issue, Dehak et al. (2010)
roposed to reduce the high-dimensional GMM-UBM supervec-
ors into low-dimensional vectors, named i-vectors by factor
nalysis. The GMM/i-vector system eliminates the within-speaker
nd channel variabilities effectively, which leads to significant
erformance improvement.
The GMM/i-vector system is shown in Fig. 3. We assume

hat Y = {y(i)t ∈ Rd1 |t = 1, 2, . . . , T } represents the ith
i = 1, 2, . . . , I) utterance of T successive Mel-frequency cepstral
oefficient (MFCC) frames, and Ω = {ωc ∈ R,µc ∈ Rd1 ,Σ c ∈

Rd1×d1 |c = 1, 2, . . . , C} (ωc ≥ 0 for all c , and
∑C

c=1 ωc =

1) denotes a GMM-UBM model where C is the total number
of components and ωc , µc and Σ c are the weight, mean, and
covariance matrix of the cth component respectively. Then, y(i)t
is assumed to be generated by the following distribution (Lei,
Scheffer, Ferrer, & McLaren, 2014; Snyder, 2020):

y(i)t ∼

C∑
c=1

ωcN(µc + Tcυ
(i),Σ c) (3)

where {Tc}
C
c=1 is a so called total variability subspace, υ(i) is a

segment-specific standard normal-distributed latent vector. The
 e
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i-vector used to represent the speech signal is the maximum a
posterior (MAP) point estimate of the latent vector υ(i), and it can
be regarded as a kind of ‘‘speaker embedding ’’.2

Given a speech segment, the following sufficient statistics can
be accumulated from the GMM-UBM:

N (i)
c =

T∑
t=1

p(c|y(i)t ) (4)

f(i)c =

T∑
t=1

p(c|y(i)t )y(i)t (5)

S(i)c =

T∑
t=1

p(c|y(i)t )y(i)t (y(i)t )T (6)

where p(c|y(i)t ) =
ωcN(y(i)t ;µc ,Σ c )∑C

c′=1 ωcN(y(i)t ;µc′ ,Σ c′ )
denotes the posterior prob-

ability of y(i)t against the cth Gaussian component. These sufficient
statistics are all that are needed to train the subspace {Tc}

C
c=1 and

extract the i-vector υ(i) (Lei, Scheffer, Ferrer, & McLaren, 2014).
See Dehak et al. (2010) and Kenny, Ouellet, Dehak, Gupta, and
Dumouchel (2008) for the details of training Tc and estimating
the i-vectors.

Motivated by the success of deep learning for speech recog-
nition, many efforts have been made to replace the GMM-UBM
module of the GMM/i-vector system by DNN, which can be cate-
gorized to two main streams—DNN-UBM/i-vector and DNN based
bottleneck feature (DNN-BNF)/i-vector. The two main streams
will be presented in detail in the following two subsections, with
selected references summarized in Table 3.

3.2. DNN-UBM/i-vector

From (4), (5), and (6), one can see that only the posteriors of
speech frames are needed to collect sufficient statistics for pro-
ducing the i-vectors. Thus, we can use any probabilistic models
beyond GMM-UBM to produce the posteriors theoretically (Lei,
Scheffer, Ferrer, & McLaren, 2014). Motivated by this insight, Lei,
Scheffer, Ferrer, and McLaren (2014) proposed the DNN-UBM/i-
vector framework (Fig. 4) which takes a DNN acoustic model
trained for ASR, denoted as DNN-UBM, to generate the posterior
probabilities instead of GMM-UBM.

Specifically, DNN-UBM uses a set of senones Q = {Qc |c =

1, 2, . . . , C}, e.g., the tied-triphone states, to mimic the mixture
components of the GMM-UBM. It first trains a DNN-based ASR
acoustic model to align each training frame with a senone, and
then generates the posterior probabilities of each frame over
the senones from the softmax output layer of the DNN acous-
tic model. The posteriors can be directly applied to (4)–(6) to
extract the DNN-UBM based i-vector. Due to the strong represen-
tation ability of DNN over GMM, DNN-UBM/i-vector yields 30%
relative equal error rate (EER) reduction over GMM/i-vector on

2 In this paper, the ‘embedding’ denotes the problem of learning a vector
pace where speakers are ‘‘embedded’’. The i-vectors, d-vectors (introduced
n Section 4.1.1), and x-vectors (introduced in Section 4.1.2) are different
mbedding models for learning the vector spaces.
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Table 3
Two main streams of the DNN/i-vector techniques.
Approaches References

DNN-UBM/i-vector Chen et al. (2015), Dey, Madikeri, Ferras, and Motlicek (2016), Dey, Motlicek,
Madikeri, and Ferras (2017), Garcia-Romero and McCree (2015), Kenny,
Stafylakis, Ouellet, Gupta, and Alam (2014), Lei, Ferrer, McLaren, and Scheffer
(2014), Lei, Scheffer, Ferrer, and McLaren (2014), McLaren, Lei, and Ferrer
(2015), McLaren, Lei, Scheffer, and Ferrer (2014), Richardson, Reynolds, and
Dehak (2015a, 2015b), Sadjadi, Ganapathy, and Pelecanos (2016), Snyder,
Garcia-Romero, and Povey (2015), Zeinali, Burget, Sameti, Glembek, and Plchot
(2016), Zeinali, Sameti, Burget, et al. (2017), Zheng, Zhang, and Liu (2015)

DNN-BNF/i-vector Do, Barras, Le, and Sarkar (2013), Ghalehjegh and Rose (2015), Lozano-Diez
et al. (2016), McLaren, Ferrer, and Lawson (2016), McLaren et al. (2015),
Richardson et al. (2015a, 2015b), Sarkar, Do, Le, and Barras (2014), Zeinali
et al. (2016)
the telephone condition of the 2012 NIST speaker recognition
evaluation (SRE) (Lei, Scheffer, Ferrer, & McLaren, 2014). Later
on, the authors in Lei, Ferrer, McLaren, and Scheffer (2014) and
McLaren et al. (2015, 2014) further analyzed the performance of
the DNN-UBM/i-vector in microphone and noisy conditions.

A lot of further studies bloomed the DNN-UBM/i-vector re-
ated techniques. For example, Richardson et al. (2015a, 2015b)
roposed to use a single ASR-DNN for both the speaker and
anguage recognition tasks simultaneously. Additionally, Snyder
t al. (2015) employed a time delay deep neural network (TDNN),
hich was originally applied to speech recognition, to compute
he posteriors. It achieved the state-of-the-art performance on
he NIST SRE10 corpus at the time. As a third instance, Zheng
t al. (2015) replaced the feedforward DNN by a long short-term
emory (LSTM) recurrent neural network (RNN). The last but
ot all, Garcia-Romero and McCree (2015) studied a number of
pen issues relating to performance, computational complexity,
nd applicability of different types of DNNs.
The advantage of the DNN acoustic model may be brought by

ts strong ability in modeling content-related phonetic states ex-
licitly, which not only generates highly compact representation
f data but also provides precise frame alignment. This advan-
age is particularly apparent in text-dependent speaker verifica-
ion (Chen et al., 2015; Dey et al., 2016, 2017; Zeinali et al., 2016,
017). However, this comes at the cost of greatly increased com-
utational complexity over the traditional GMM-UBM/i-vector
ystems (Snyder et al., 2015; Snyder, Garcia-Romero, Povey, &
hudanpur, 2017), since that a DNN usually has more parameters
han GMM. In addition, the training of the DNN based acoustic
odel requires a large number of labeled training data.
To overcome the computational complexity, a supervised

MM-UBM was also investigated based on the DNN acoustic
odel (Snyder et al., 2015). In specific, a GMM is obtained
y:

γ
(i)
ct =p(c|y(i)t )

ωc =

∑
i,t

γ
(i)
ct

µc =

∑
i,t γ

(i)
ct y

(i)
t∑

i,t γ
(i)
ct

Σ c =

∑
i,t γ

(i)
ct y

(i)
t (y(i)t )T∑

i,t γ
(i)
ct

− µcµ
T
c

(7)

where y(i)t and y(i)t denote the acoustic features for ASR and
speaker recognition respectively, and p(c|y(i)t ) is the posterior
robability corresponding to the cth senones. By this way, the
upervised-GMM maintains the training computational complex-
ty of the traditional unsupervised-GMM, with a 20% relative
ER reduction on the NIST SRE10 corpus (Snyder et al., 2015).
imilar idea was also studied in Lei, Scheffer, Ferrer, and McLaren
69
Fig. 4. DNN-UBM/i-vector. The posteriors are produced from the DNN acoustic
model of an automatic speech recognition (ASR) system that is trained with,
e.g. Logmel filterbank features. On the contrary, the sufficient statistics are
computed from a speaker verification (SV) system that is trained with, e.g. MFCC
which is not necessarily the same as the features for ASR. That is to say, one
does not have to find a feature that works well for both ASR and SV in this
framework.
Source: From Lei, Scheffer, Ferrer, and McLaren (2014).

(2014), though no performance improvement over the baseline
is observed. Although the supervised-GMM reduces the training
computational complexity, training the DNN acoustic model still
needs a large amount of labeled training data.

3.3. DNN-BNF/i-vector

The fundamental idea of DNN-BNF/i-vector is to extract a
compact feature from the bottleneck layer of a DNN as the input
of the factor analysis, where the bottleneck layer is a special
hidden layer of the DNN that has much less hidden units than
the other hidden layers. In practice, DNN-BNF/i-vector has many
variants, as we have summarized in Fig. 5. Like DNN-UBM/i-
vector, the deep model in DNN-BNF/i-vector is mainly trained to
discriminate senones (Lozano-Diez et al., 2016; McLaren, Ferrer,
& Lawson, 2016; McLaren et al., 2015; Richardson et al., 2015a,
2015b; Zeinali et al., 2016) or phonemes (Do et al., 2013; Sarkar
et al., 2014).

The input of the factor analysis can be either the bottleneck
feature (BNF) produced from the bottleneck layer, a concatena-
tion of BNF with other acoustic feature (Do et al., 2013; Sarkar
et al., 2014), or a post-processed feature by principal compo-
nents analysis (PCA) or linear discriminant analysis (LDA) (Do
et al., 2013; Sarkar et al., 2014). One can find that no matter
whether we apply BNF alone (Richardson et al., 2015a) or con-
catenate it with other acoustic features (McLaren et al., 2015),
DNN-BNF/i-vector can significantly outperform the conventional
GMM/i-vector, which indicates the effectiveness of the frame-
work (Richardson et al., 2015b).

However, it is unclear why a deep model trained to discrim-
inate phonemes or senones can produce speaker-sensitive BNF.
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Fig. 5. The DNN-BNF/i-vector framework. The framework is a summarization
of related work. The terms ‘‘PCA’’, ‘‘LDA’’, and ‘‘BNF’’ are short for princi-
pal components analysis, linear discriminant analysis, and bottleneck feature
respectively.

To address this issue, the authors of McLaren, Ferrer, and Lawson
(2016) assumed that speaker information is traded for dense
phonetic information when the bottleneck layer moves towards
the DNN output layer. Under this hypothesis, they experimen-
tally analyzed the role of BNF by placing the bottleneck layer
at different depths of the DNN. They found that, if the training
and test conditions match, the closer the bottleneck layer is
to the output layer, the better the performance is; otherwise,
the bottleneck layer should be placed around the middle of the
DNN. The authors of Lozano-Diez et al. (2016) explored whether
weakening the accuracy of the acoustic model on speech recog-
nition yields better BNF for speaker recognition. They analyzed
the speaker recognition performance in different respects of the
acoustic model, including under-trained DNN, different inputs,
and different feature normalization strategies. Results indicate
that high speech recognition performance in terms of phonetic
accuracy does not necessarily imply increased speaker recogni-
tion accuracy. In addition, Ghalehjegh and Rose (2015) proposed
to take speaker identity as the training target, under the con-
jecture that this training target should be able to improve the
robustness of the phonetic variability of BNF.

3.4. Discussion to the DNN/i-vector

It is known that a major difference between DNN-UBM and
MM-UBM is that DNN-UBM is a discriminant model, while
MM-UBM is a generative one. DNN-UBM is more powerful
han GMM-UBM in modeling a complicated data distribution (Lei,
cheffer, Ferrer, & McLaren, 2014; Snyder et al., 2015). More-
ver, the DNN acoustic model is trained to align each speech
rame to its corresponding senone in a supervised fashion. Its
utput nodes have a clear physical explanation. It mines the
ronunciation characteristics of speakers. On the contrary, GMM-
BM is trained by the expectation-maximum algorithm in an
nsupervised manner. Its mixtures have no inherent meaning. Al-
hough DNN-UBM/i-vector needs labeled training data and heav-
er computation power than GMM-UBM, it does yield excellent
erformance. In addition, many corpora are also developed for
he demand of training strong DNN, which will be reviewed in
ection 11.
To demonstrate general performance differences of DNN/i-

ector and GMM/i-vector, some carefully selected experimen-
al results from literatures are listed in Table 4. Compared to
70
Fig. 6. Diagram of the d-vector framework.
Source: From Variani et al. (2014).

the GMM-UBM/i-vector baseline, one can find that DNN-UBM/i-
vector achieves more than 20% relative EER reduction over GMM-
UBM/i-vector. In addition, the supervised GMM-UBM in (7) can
also get 20% relative improvement according to the fourth row.
Finally, from the last two rows, one can see that, when taking
DNN-BNF and MFCC as the input features of the GMM-UBM/i-
vector respectively, the former achieves better performance than
the latter.

It should be noted that, as far as we know, different test
conditions may yield slightly different conclusions from those in
Table 4. However, to our knowledge, the results in the table can
be a representative of the research trend.

4. Speaker feature extraction with deep embedding

In this section, we first introduce two representative deep
embeddings—d-vector and x-vector in Section 4.1 with some
discussions in Section 4.2, and then identify their key com-
ponents in Section 4.3, which provide a taxonomy to existing
algorithms.

4.1. Two seminal work of deep embeddings

4.1.1. Frame-level embedding—d-vector
D-vector is one of the earliest DNN-based embeddings (Variani

et al., 2014). The core idea of d-vector is to assign the ground-
truth speaker identity of a training utterance as the labels of the
training frames belonging to the utterance in the training stage,
which transforms the model training as a classification problem.
As shown in Fig. 6, d-vector expands each training frame with its
context, and employs a maxout DNN to classify the frames of a
training utterance to the speaker identity of the utterance, where
the DNN takes softmax as the output layer to minimize the cross-
entropy loss between the ground-truth labels of the frames and
the network output.

In the test stage, d-vector takes the output activation of each
frame from the last hidden layer of the DNN as the deep em-
bedding feature of the frame, and averages the deep embedding
features of all frames of an utterance as a new compact represen-
tation of the utterance, named d-vector. An underlying hypothesis
of d-vector is that the compact representation space produced
from a development set may generalize well to unseen speakers
in the test stage.
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omparison results between DNN/i-vector and GMM/i-vector. Each row denotes a comparison. The last three columns list the EER of the main models, the EER of
he baselines, and the relative EER reductions, respectively. The results across rows are not comparable, since they are collected from different references, and
their comparisons are not apple-to-apple comparisons.
Comparisons Test dataset [condition] EER

Main models Baselines Main Baseline Relative reduction

DNN-UBM (Lei, Scheffer, Ferrer, & McLaren, 2014) GMM-UBM NIST SRE12 C2 1.39% 1.81% 23%
DNN-UBM (Lei, Scheffer, Ferrer, & McLaren, 2014) GMM-UBM NIST SRE12 C5 1.92% 2.55% 25%
TDNN-UBM (Snyder et al., 2015) GMM-UBM NIST SRE10 C5 1.20% 2.42% 50%
Sup-GMM-UBM (Snyder et al., 2015) GMM-UBM NIST SRE10 C5 1.94% 2.42% 20%
BNF (Richardson et al., 2015b) MFCC In-domain DAC13 2.00% 2.71% 26%
BNF (Richardson et al., 2015b) MFCC Out-domain DAC13 2.79% 6.18% 55%
Fig. 7. Diagram of the DNN model for extracting x-vectors. Note that segment-
level embeddings (e.g., a or b) can be extracted from any layer of the network
fter the statistics pooling layer (Snyder et al., 2017). Snyder et al. (2018) where
he name ‘‘x-vector’’ comes from uses of the embedding a as the speaker feature.
ource: From Snyder et al. (2017).

.1.2. Segment-level embedding—x-vector
X-vector (Snyder et al., 2017, 2018) is an important evolution

f d-vector that evolves speaker recognition from frame-by-frame
peaker labels to utterance-level speaker labels with an aggrega-
ion process. The network structure of x-vector is shown in Fig. 7.
t first extracts frame-level embeddings of speech frames by time-
elay layers, then concatenates the mean and standard deviation
f the frame-level embeddings of an utterance as a segment-
evel (a.k.a., utterance-level) feature by a statistical pooling layer,
nd finally classifies the segment-level feature to its speaker by
standard feedforward network. The time-delay layers, statisti-
al pooling layer, and feedforward network are jointly trained.
-vector is defined as the segment-level speaker embedding pro-
uced from the second to last hidden layer of the feedforward
etwork, i.e. the variable a in Fig. 7.
The authors in Snyder et al. (2018) found that data augmenta-

ion is important in improving the performance of x-vector. We
ill introduce the data augmentation techniques in Section 10.3.

.2. Discussion to the speaker embedding

Similar to the i-vector, the d-vector and x-vector are also
kind of speaker embedding, which discriminatively embeds

peakers into a vector space by using DNNs. We call this type of
peaker embedding as deep speaker embedding, or deep embedding
or short. The main characteristics between different speaker em-
eddings are summarized in Table 5. Compared to the traditional
MM-UBM/i-vector, the deep embedding is a discriminant model
nd trained in a supervised fashion. Compared to DNN-UBM, its
raining data does not need phonetic-level labels. Therefore, the
71
Fig. 8. Statistics of the published papers on DNN/i-vector and deep embedding
cited by this article.

training of the deep embedding is much simpler than that of
DNN-UBM and DNN-BNF. In addition, the deep embedding is a
new framework, while DNN-UBM/i-vector and DNN-BNF/i-vector
are hybrid ones.

Some experimental results on deep embedding are listed in
Table 6. From the table, one can find that, the d-vector alone
yields higher EER than the i-vector. When fusing the d-vector and
i-vector, the combined system achieves 14% and 25% relative EER
reduction in clean and noisy test conditions respectively over the
i-vector. The ‘‘embedding a+b’’ model, which is the predecessor
of the x-vector, achieves lower EER than the GMM-UBM/i-vector
baseline on the 10-second short utterances of NIST SRE10, and
higher EER than the latter on the 60-second long utterances of
NIST SRE10. With enlarged training data and data augmentation,
the x-vector achieves significant performance improvement over
the GMM-UBM/i-vector.

Fig. 8 shows the number of the related papers. We observe
the following phenomena. First, the d-vector and DNN-UBM/i-
vector was proposed both in 2014, where the former achieved
better performance at the time. Second, the research on DNN/i-
vector was mainly conducted in the first few years after its
appearance, and then became less studied. Third, the research
on deep embedding becomes bloom along with its performance
improvement after that the x-vector achieved the state-of-the-
art performance. At present, the deep embedding is the trend of
speaker recognition, which has been developed in several aspects
as summarized in the following subsection.

4.3. Four key components of deep embedding

Motivated by the seminal work d-vector and x-vector, many
deep embedding techniques were proposed, most of which are
composed of four key components—network input, network
structure, temporal pooling, and training objective. These com-
ponents include but not limited to the following contents:
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haracteristics of different speaker embeddings and their favorite back-ends.
Model name Type Training strategy Label for model training Back-end name Label for back-end training

GMM-UBM/i-vector Generative/Generative Unsupervised/Unsupervised ✗/✗ PLDA Speaker identity
DNN-UBM/i-vector Discriminative/Generative Supervised /Unsupervised Phonetic labels/✗ PLDA Speaker identity
DNN-BNF/i-vector Discriminative/Generative Supervised/Unsupervised Phonetic labels/✗ PLDA Speaker identity
D-vector Discriminative Supervised Speaker identity Cosine ✗

X-vector Discriminative Supervised Speaker identity PLDA Speaker identity
Table 6
Selected results on deep embedding in literature. Each row represents a comparison. The results across rows are not comparable.
Comparison methods Test dataset [condition] EER

Deep embedding Baseline Deep embedding Baseline Relative reduction

d-vector (Variani et al., 2014) GMM-UBM/i-vector Google data 4.54% 2.83% −37%
d-vector+i-vector (Variani et al.,
2014)

GMM-UBM/i-vector Google data [clean,
noisy]

– – [14%, 25%]

embedding a+b (in Fig. 7) (Snyder
et al., 2017)

GMM-UBM/i-vector NIST SRE10 [10s-10s,
60s]

[7.9%, 2.9%] [11.0%, 2.3%] [28%, −21%]

embedding a+b (in Fig. 7) (Snyder
et al., 2017)

GMM-UBM/i-vector NIST SRE16 [Cantonese,
Tagalog]

[6.5%, 16.3%] [8.3%, 17.6%] [22%, 7%]

x-vector (embedding a) (Snyder
et al., 2018)

GMM-UBM/i-vector SITW Core [PLDA and
extractor aug., Incl.
VoxCeleb]

[6.00%, 4.16%] [8.04%, 7.45%] [25%, 44%]

x-vector (embedding a) (Snyder
et al., 2018)

GMM-UBM/i-vector SRE16 Cantonese [PLDA
and extractor aug., Incl.
VoxCeleb]

[5.86%, 5.71%] [8.95%, 9.23%] [34%, 38%]
• Network inputs and structures: The network input can be cat-
egorized into two classes—raw wave signals in time domain
and acoustic features in time–frequency domain, including
spectrogram, Mel-filterbanks (f-bank), and MFCC. The net-
work structure is diverse, which is rooted essentially at
DNN, RNN/LSTM, and CNN. Because the network input and
structure were jointly designed case by case in practice, we
will jointly summarize them in Section 5.

• Temporal pooling: Temporal pooling represents the transi-
tion layer of a neural network that transforms frame-level
embedding features to utterance-level embedding features.
The temporal pooling strategies consist of two classes—
statistical pooling and learning based pooling. We will in-
troduce them in Section 6.

• Objective functions: Objective functions affect the effective-
ness of speaker recognition much. Both d-vector and x-
vector adopt softmax as the output layer and take the
cross-entropy minimization as the objective function, which
may not be optimal. Recently, many objectives were de-
signed to further improve the performance. We will survey
the objective functions in Section 7.

5. Deep embedding: network structures and inputs

Although deep neural networks can be divided roughly into
NN, CNN, and RNN/LSTM structures, the network structure and
nput for speaker recognition are quite flexible. Each component
f a network has many candidates. For example, the hidden layer
f a neural network may be a standard convolutional layer (Bhat-
acharya et al., 2017), a dilated convolution layer (Gao et al.,
018), a LSTM layer (Jung et al., 2018a), a gated recurrent unit
GRU) layer (Jung, Heo, Kim, Shim, & Yu, 2019), a multi-head
ttention layer, a fully-connected layer, and even a combination
f these different layers (Jung, Heo, Kim, Shim, & Yu, 2019;
ung et al., 2018a), etc. The activation functions can be Sigmoid,
ectified Linear Unit (ReLU), Leaky ReLU, or Parametric Rectified
inear Unit (PReLU) etc. Besides, the topology of a network and
onnection mode between layers are all variables. Even the num-
er of layers and number of hidden units at a layer can also affect
he performance. To prevent enumerating the networks case by
72
case, here we first review some commonly used networks for the
speaker feature extraction, and then briefly review their inputs.

Time delay neural network (TDNN) (Snyder et al., 2017): TDNN
takes a one-dimensional convolution structure along the time
axis as a feature extractor (Peddinti, Povey, & Khudanpur, 2015).
It is adopted by the well known x-vector, as shown in Fig. 7.
Due to the success of the x-vector (Snyder et al., 2019, 2018),
TDNN becomes one of the most popular structures for speaker
recognition. For example, Liu et al. (2018) introduced phonetic
information to the TDNN architecture based embedding extrac-
tor. Stafylakis, Rohdin, Plchot, Mizera, and Burget (2019) trained
a TDNN embedding extractor without speaker labels via self-
supervised training. Zhu and Mak (2020a, 2020b) explored the
effectiveness of the orthogonality regularization by TDNN. Gen-
erally, TDNN has been frequently used as a framework to study
other key components of the deep embedding models, such as
the temporal pooling layers (Okabe et al., 2018; Zhu et al., 2018)
and objective functions (Bai et al., 2020a; Li, Tang, Shi, & Wang,
2019; Xiang et al., 2019).

The TDNN structure has also been intensively improved. For
instance, an extended TDNN architecture (E-TDNN) was intro-
duced in Snyder et al. (2019), which greatly outperforms the
x-vector baseline (Snyder et al., 2018). It adopts a slightly wider
temporal context than TDNN, and interleaves affine layers in
between the convolutional layers (Garcia-Romero, McCree, Sny-
der, & Sell, 2020). Povey et al. (2018) developed a factorized
TDNN (F-TDNN) to reduce the number of parameters. It factorizes
the weight matrix of each TDNN layer into the product of two
low-rank matrices. It further constrains the first low-rank ma-
trix to be semi-orthogonal under the assumption that the semi-
orthogonal constraint prevents information loss. The application
of F-TDNN to deep embedding was also investigated (Garcia-
Romero, McCree, Snyder, & Sell, 2020; Snyder et al., 2019; Villalba
et al., 2019). Some other parameter reduction works can be found
in Georges, Huang, and Bocklet (2020) and Yu and Li (2020).
Recently, Hong et al. (2020b) integrated TDNN with statistics
pooling at each layer for compensating the variation of temporal
context in the frame-level transforms. Similarly, Chen et al. (2019)
and Tang et al. (2019) inserted LSTM layers into TDNN to capture
the temporal information for remedying the weakness of TDNN

whose time delay layers focus on local patterns only. Li et al.
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brief summary of the inputs and neural network structures in deep speaker feature extraction.
Inputs CNN LSTM Hybrid structures

Wave Others (Muckenhirn, Doss, & Marcell, 2018; Ravanelli &
Bengio, 2018).

– CNN-LSTM (Jung, Heo, Yang, Shim, &
Yu, 2018a, 2018b); CNN-GRU (Jung,
Heo, Kim, Shim, & Yu, 2019; Jung,
Heo, Shim, & Yu, 2019).

Spectrogram ResNet (Chung, Nagrani, & Zisserman, 2018; Xie, Nagrani,
Chung, & Zisserman, 2019; Yadav & Rai, 2020; Yu, Fan, &
Li, 2019); VGGNet (Nagrani et al., 2017; Yadav & Rai,
2018); Inception-resnet-v1 (Zhang & Koishida, 2017; Zhang,
Koishida, & Hansen, 2018).

– CNN-GRU (Zhang et al., 2019)

F-bank TDNN (Garcia-Romero, McCree, Snyder, & Sell, 2020;
Snyder et al., 2018; Zhu & Mak, 2020a, 2020b);
ResNet (Garcia-Romero, Sell, & Mccree, 2020; Kim, Kim,
Kim, & Choi, 2019; Li et al., 2017; Wang, Yao, Li, & Fang,
2020c); VGGNet (Bhattacharya, Alam, & Kenny, 2017);
Inception-resnet-v1 (Li et al., 2019; Li, Tuo, Su, Li, & Yu,
2018; Zhang, Koishida, & Hansen, 2018); Others (Li, Chen,
Shi, Tang, & Wang, 2017; Torfi, Dawson, & Nasrabadi,
2018).

rahman Chowdhury,
Wang, Moreno, and Wan
(2018), Heigold, Moreno,
Bengio, and Shazeer
(2016), Wan, Wang,
Papir, and Moreno
(2018).

BLSTM-ResNet (Zhao, Zhou, Chen, &
Wu, 2020), TDNN-LSTM (Tang, Ding,
Huang, He, & Zhou, 2019)

MFCC TDNN (Bai, Zhang, & Chen, 2020a; Garcia-Romero et al.,
2020; Hong, Wu, Wang, & Huang, 2020b; Li, Tang, Shi, &
Wang, 2019; Li et al., 2020; Liu, He, Liu, & Johnson, 2018;
Okabe, Koshinaka, & Shinoda, 2018; Snyder et al., 2017,
2019; Villalba et al., 2019; Xiang, Wang, Huang, Qian, & Yu,
2019; Zhu, Ko, Snyder, Mak, & Povey, 2018); ResNet (Zhou,
Jiang, Li, Li, & Hong, 2019); Others (Gao, Song, McLoughlin,
Guo, & Dai, 2018; Jiang, Song, McLoughlin, Gao, & Dai,
2019).

– TDNN-LSTM (Chen et al., 2019)
c
b
C
a
s
I
t
r

(2020) alleviated the mismatch problem between training and
evaluation by incorporating Bayesian neural networks into TDNN.

Residual networks (ResNet) (He, Zhang, Ren, & Sun, 2016):
t is another popular structure in speaker embedding. Its trunk
rchitecture is a 2-dimensional CNN with convolutions in both
he time and frequency domains. Some work directly used the
tandard ResNet as their speaker feature extractors (Chung et al.,
018; Li et al., 2017; Wang et al., 2020c; Yu et al., 2019). Some
ther work employed ResNet as a backbone and modified it for
pecific purposes or applications (Garcia-Romero et al., 2020; Kim
t al., 2019; Xie et al., 2019; Yadav & Rai, 2020; Zhao et al.,
020; Zhou, Jiang, Li, Li, & Hong, 2019). For example, to reduce
he number of parameters, Xie et al. (2019) modified the stan-
ard ResNet-34 to a thin ResNet by cutting down the number
f channels in each residual block. The authors in Zhao et al.
2020) combined bi-directional LSTM (BLSTM) and ResNet into
unified architecture, where the BLSTM is used to model long

emporal contexts. The authors in Zhou, Jiang, Li, Li, and Hong
2019) incorporated a so-called ‘‘squeeze-and-excitation’’ block
nto ResNet.

Raw wave neural networks (Jung, Heo, Kim, Shim, & Yu, 2019;
ung, Heo, Shim, & Yu, 2019; Jung et al., 2018a, 2018b; weon
ung, bin Kim, jin Shim, ho Kim, & Yu, 2020; Lin & Mak, 2020;
uckenhirn et al., 2018; Ravanelli & Bengio, 2018): some work

akes raw waves in the time domain as the input, which aims
o extract learnable acoustic features instead of handcrafted fea-
ures. For example, Muckenhirn et al. (2018) applied CNN to
apture raw speech signal. The experimental results indicate that
he filters of the first convolution layer give emphasis to speaker
nformation in low frequency regions. The authors in Ravanelli
nd Bengio (2018) believed that the first layer is critical for
he waveform-based CNNs, since it not only deals with high-
imensional inputs, but suffers more from the gradient vanishing
roblem than the other layers. Therefore, they proposed a SincNet
rchitecture based on parametrized sinc functions, where only
ow and high cutoff frequencies of band-pass filters are learned
rom data (Ravanelli & Bengio, 2018). In Jung et al. (2018b), the
uthors thought that the difficulty of processing raw audio signals
y DNN is mainly caused by the fluctuating scales of the sig-
als. To stabilize the scales, they employed a convolutional layer,
 f

73
named pre-emphasis layer, to mimic the well-known signal pre-
emphasis technique p(t) = s(t)−αs(t−1). They also made several
improvements to the original raw wave network (Jung, Heo, Kim,
Shim, & Yu, 2019; Jung, Heo, Shim, & Yu, 2019; weon Jung et al.,
2020) which results in excellent performance. Lin and Mak (2020)
designed a Wav2Spk architecture to learn speaker embeddings
from waveforms, where the traditional MFCC extraction, voice
activity detection, and cepstral mean and variance normalization
are replaced by a feature encoder, a temporal gating unit and an
instance normalization scheme respectively. Wav2Spk performs
better than the convention x-vector network.

Other neural networks: in addition to TDNN and ResNet, many
other well-known neural network architectures have also been
applied to speaker recognition, including VGGNet (Bhattacharya
et al., 2017; Nagrani et al., 2017; Yadav & Rai, 2018), Inception-
resnet-v1 (Li et al., 2019, 2018; Zhang & Koishida, 2017; Zhang,
Koishida, & Hansen, 2018), BERT (Ling, Salazar, Liu, & Kirchhoff,
2020), and Transformer (Safari, India, & Hernando, 2020). Besides,
recurrent neural networks, such as LSTM and gated recurrent
units, are often used for text-dependent speaker verification (rah-
man Chowdhury et al., 2018; Heigold et al., 2016; Wan et al.,
2018). The CNN models can also be improved by inserting LSTM
or gated recurrent units into the backbone networks (Chen et al.,
2019; Jung, Heo, Kim, Shim, & Yu, 2019; Jung, Heo, Shim, & Yu,
2019; Jung et al., 2018a, 2018b; Tang et al., 2019; Zhang et al.,
2019; Zhao et al., 2020). Finally, apart from the above handcrafted
neural architectures, neural architecture search was also recently
applied to speaker recognition (Ding, Chen, Gong, Zha, & Wang,
2020; Qu, Wang, & Xiao, 2020).

Neural network inputs: Table 7 provides a summary to the
ommon inputs and neural networks for the deep embedding
ased speaker feature extraction. From the table, one can see that
NN-based neural networks and f-bank/MFCC acoustic features
re becoming popular, while some 2-dimensional convolution
tructures, e.g. ResNet, use spectrogram as the input feature.
n addition to the above common inputs, such as MFCC, spec-
rum and mel-filterbanks, Liu, Sahidullah, and Kinnunen (2020)
ecently presented an extensive re-assessment of 14 acoustic
eature extractors. They found that the acoustic features equipped



Z. Bai and X.-L. Zhang Neural Networks 140 (2021) 65–99

w
a
t

5

e
r
F
o
a
o

a
G
v
t
e
t

s
F
T
f
m
w
a
l
n
i
a

6

b
a
t

w
s
[

6

t
s
d
a
l
v
t
a

s
s
f
s
S

6

a{
w
n
u
t
s
s
t
s
t

f

w

w
α
s
f

m

d̃

F

ith the techniques of spectral centroids, group delay function,
nd integrated noise suppression provide promising alternatives
o MFCC.

.1. Discussion to the networks

The network structure plays a key role on performance. For
xample, as shown in Table 8, E-TDNN and F-TDNN significantly
educed EER on the SITW dataset (McLaren et al., 2016), where
-TDNN achieves more than 40% relative EER reduction over the
riginal TDNN. Although this promotion is not consistent across
ll datasets (Villalba et al., 2020), it demonstrates the importance
f the network structure on performance.
For the acoustic features, the delta and double-delta features

re helpful in statistical model based speaker recognition, e.g. the
MM-UBM/i-vector. However, they are not very effective in con-
olution and time-delay neural networks. This may be caused by
hat, the statistical model needs the delta and double-delta op-
rations to capture the time dependency between frames, while
he neural networks are able to achieve this goal intrinsically.

Although the deep embedding networks have achieved a great
uccess, in our view, the following aspects can be further studied.
irst, the raw wave networks did not attract much attention.
he mainstream of speaker recognition still adopts handcrafted
eatures, which may lose useful information, e.g. the phase infor-
ation, and finally may result in suboptimal performance as what
e have observed in speech separation. Second, the model size
nd inference efficiency, which is important for the devices with
imited computation source, e.g. edge or mobile devices, have
ot been fully studied. The topic was just recently investigated
n Georges et al. (2020), Nunes, Macêdo, and Zanchettin (2020)
nd Safari et al. (2020).

. Deep embedding: Temporal pooling layers

As shown in Fig. 7, the temporal pooling layer is a bridge
etween the frame-level and utterance-level hidden layers. Given
speech segment, we assume that the input and output of the

emporal pooling layer are H = {ht ∈ Rd2 |t = 1, 2, . . . , T }

and u, respectively, where ht denotes the tth frame-level speaker
feature produced from the frame-level hidden layers. In this
section, we introduce a number of temporal pooling functions.

6.1. Average pooling

Average pooling (Li et al., 2017, 2018; Yadav & Rai, 2018;
Zhang & Koishida, 2017) is the most common pooling function:

u =
1
T

T∑
t=1

ht (8)

6.2. Statistics pooling

Statistics pooling (Snyder et al., 2017, 2018) calculates both
the statistic mean m and standard deviation d of H:

m =
1
T

T∑
t=1

ht (9)

d =

√ 1
T

T∑
t=1

ht ⊙ ht − m ⊙ m (10)

here ⊙ denotes the Hadamard product. The output of the
tatistics pooling layer is a concatenation of m and d, i.e. u =

mT , dT
]
T .
74
.3. Self-attention-based pooling

Obviously, (8), (9), and (10) assume that all elements of H con-
ribute equally to u. However, the assumption may not be true,
ince that the frames may not provide equal speaker-
iscriminative information. To address this issue, many works
pplied self attention mechanisms for weighted statistics pooling
ayers. Specifically, the attention can be broadly interpreted as a
ector of importance weights,3 which allows a neural network
o focus on a specific portion of its input. Furthermore, the self
ttention computes attentive weights within a single sequence.
In the following two subsections, we first present a general

elf attention framework which produces weighted means and
tandard deviations of the input from a self-attentive scoring
unction in Section 6.3.1, and then list a number of specific
elf-attention-based pooling methods under the framework in
ection 6.3.2.

.3.1. A self attention pooling framework
Without loss of generality, self-attentive scoring is defined

s:

f (k)Att (·)|k = 1, 2, . . . , K
}

(11)

here f (k)Att (·) is usually referred as one-head, and K is the total
umber of heads. If K ≥ 2, the self attention mechanism is
sually called multi-head self attention which allows the model
o jointly attend to information from different representation
ubspaces (Vaswani et al., 2017); otherwise, it degenerates into a
ingle-head one. Although f (k)Att (·) has many different implementa-
ions, many of the implementations share similar forms with the
tructured self-attentive function (Lin et al., 2017) which obtains
he importance weights by:
(k)
Att (ht ) = v(k)

T
tanh(W(k)ht + g(k)) + b(k), k = 1, 2, . . . , K (12)

here W(k)
∈ Rd3×d2 , g(k)

∈ Rd3 , v(k) ∈ Rd3 and b(k) ∈ R
are learnable parameters of the kth scoring function. Suppose
s(k)t = f (k)Att (ht ), k = 1, 2, . . . , K , then the importance weights for
the frame-level feature ht are obtained by normalizing s(k)t with a
softmax function:

α
(k)
t =

exp
(
s(k)t

)∑T
t ′ exp

(
s(k)t ′

) , k = 1, 2, . . . , K (13)

here the normalization guarantees that the weights satisfy 0 ≤
(k)
t ≤ 1 and

∑T
t=1 α

(k)
t = 1. Finally, the weighted mean and

tandard deviation produced from the kth self-attentive scoring
unction can be derived as follows:

˜(k)
=

T∑
t=1

α
(k)
t ht , k = 1, 2, . . . , K (14)

(k)
=

√ T∑
t=1

α
(k)
t ht ⊙ ht − m̃(k) ⊙ m̃(k), k = 1, 2, . . . , K (15)

inally, m̃(k) and d̃(k) are used to calculate an utterance-level
representation as described in the following subsection.

6.3.2. Attention pooling methods
Under the above attention framework, this subsection catego-

rizes existing self-attention based pooling layers into the follow-
ing six classes, where all methods take (12) as the self-attentive
scoring function and take (13) as the normalization function,
unless otherwise stated.

3 https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
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Table 8
Selected examples of the effect of neural network structures on performance.
Source: From Villalba et al. (2020).
Comparison methods Test dataset [condition] EER

Main models Baselines Main Baseline Relative reduction

E-TDNN (10M) TDNN (8.5M) SITW EVAL CORE (16 kHz systems) 2.74% 3.40% 19%
F-TDNN (9M) TDNN (8.5M) SITW EVAL CORE (16 kHz systems) 2.39% 3.40% 30%
F-TDNN (17M) TDNN (8.5M) SITW EVAL CORE (16 kHz systems) 1.89% 3.40% 44%
ResNet (8M) TDNN (8.5M) SITW EVAL CORE (16 kHz systems) 3.01% 3.40% 11%
s
G
t
e

6

• Single-head attentive average pooling (Bhattacharya, Alam,
Gupta, & Kenny, 2018; Bhattacharya et al., 2017; rahman
Chowdhury et al., 2018): Bhattacharya et al. (2017) takes
a fully-connected layer as fAtt(·). Bhattacharya et al. (2018)
adopts the cosine function to compute attention scores:

st = fAtt(ht , r) =
hT
t r

∥ht∥2∥r∥2
(16)

where r is a nonlinearly transformed i-vector from the same
utterance as h. Obviously, the attention weights in (16) are
determined by both the frame-level ht and the utterance-
level information r. In rahman Chowdhury et al. (2018),
several attentive functions similar to (12) are investigated.
The output of the single-head attentive average pooling is
set to the weighted mean:

u = m̃(1). (17)

• Single-head attentive statistics pooling
(Okabe et al., 2018): It uses a single-head attention function,
i.e. K = 1. Its output is a concatenation of both the weighted
mean and weighted standard deviation:

u = [m̃(1)T , d̃(1)T
]
T . (18)

• Single-head Baum–Welch statistics attention mechanism
based statistics pooling (Gu, Guo, Dai, & Du, 2020): To
overcome the weakness of (12) which cannot fully mine the
inner relationship between an utterance and its frames, Gu
et al. (2020) integrated the Baum–Welch statistics into the
attention mechanism:

st = vT tanh(Kqt + g) (19)

where K is named the key matrix and qt is a query vector
calculated by:

qt = f (h(−1)
t ) (20)

where f (·) is a nonlinear function, and h(−1)
t denotes the out-

put of a penultimate frame-level hidden layer. The key ma-
trix K is calculated from the Baum–Welch statistics. Specif-
ically, Gu et al. (2020) first calculates the normalized first
order statistics fc from the cth component of a GMM-UBM
model Ω (see (5)), and then conducts the following nonlin-
ear transform:

f′c = V2 tanh(V1fc + g), ∀c = 1, . . . , C (21)

where V1, V2 and g are the parameters of DNN. Finally, it
concatenates F′

= [f′1, f
′

2, . . . , f
′

C ] and the trainable matrix
W as the key matrix:

K = [F′,W]
T (22)

After obtaining st , u is obtained in the same way as (18).
• Global multi-head attentive average pooling: It first ap-

plies a K -head (K ≥ 2) attention function to H by (12). Then,
the attentive weights and weighted means are calculated
by (13) and (14) respectively (Wang et al., 2020c). Finally,
 N

75
the output of the pooling layer u is the concatenation of the
weighted means:

u = [m̃(1)T , m̃(2)T , . . . , m̃(K )T
]
T (23)

It can be seen that u ∈ RKd2 . Similar ideas can also be
found in Zhou, Zhao, Li, Gong, and Wu (2019) and Zhu et al.
(2018). Zhu et al. (2018) also added an additional penalty
term into the objective function to enlarge the diversity
between the heads.

• Sub-vectors based multi-head attentive average
pooling (India, Safari, & Hernando, 2019): It first splits ht
into K (K ≥ 2) non-overlapping homogeneous sub-vectors
ht = [h(1)T

t ,h(2)T
t , . . . ,h(K )T

t ]
T , where h(k)

t ∈ Rd2/K . Then,
it applies single-head attention to each of the sub-vectors
H(k)

= {h(k)
t ∈ Rd2/K |t = 1, 2, . . . , T }. Finally, it obtains the

sub-pooling outputs by:

u(k)
=

T∑
t=1

α
(k)
t h(k)

t , k = 1, 2, . . . , K (24)

It can be seen that u(k)
∈ Rd2/K . The output of the pooling

layer is a concatenation of the sub-pooling outputs:

u = [u(1)T ,u(2)T , . . . ,u(K )T
]
T . (25)

• Multi-resolution multi-head attentive average
pooling (Wang et al., 2020c): Because the speaker charac-
teristics are obtained through the aggregation of the atten-
tive weights reweighted frame-level features, Wang et al.
(2020c) proposed to control the resolution of the attentive
weights with a temperature parameter. They modify the
softmax function as:

αt =
exp(st/E)∑T

t ′=1 exp(st ′/E)
(26)

where E is the temperature parameter. It is obvious that in-
creasing E makes the distribution of αt less sharp, i.e. lower
resolution. By incorporating the above intuition, the weight-
ing equation (13) is changed to:

α
(k)
t =

exp
(
s(k)t /Ek

)∑T
t ′ exp

(
s(k)t ′ /Ek

) (27)

where Ek ≥ 1 is a temperature hyperparameter of the kth
head. Finally, the output u is calculated in a similar way
with that of the global multi-head attentive average pooling
except that α(k)

t is replaced by (27).

It is clear that the above attentive pooling methods all employ
calar attention weights for each frame-level vector. Wu, Guo,
ao, Hou, and Xu (2020) further proposed a vector-based atten-
ive pooling method, which adopts vectorial attention weights for
ach frame-level vector.

.4. NetVLAD & GhostVLAD pooling

In Xie et al. (2019), the authors applied a dictionary-based
etVLAD layer to aggregate features across time, which can be
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Fig. 9. Diagram of the NetVLAD pooling layer.
Source: From Arandjelovic, Gronat, Torii, Pajdla,
and Sivic (2016).

ntuitively regarded as trainable discriminative clustering: every
rame-level descriptor will be softly assigned to different clusters,
aking the residuals encoded as the output feature (Xie et al.,
019).
Specifically, as shown in Fig. 9, suppose that the input of the

etVLAD layer is a three-dimensional tensor H(W×H)×D, where W ,
and D depend on the speech length, the dimensions of the

pectrum frequency bins, and the number of convolution kernels
espectively. By only retaining the third dimension, H can be
onverted to N one-dimensional tensors, i.e. H = {hn ∈ RD

|n =

, 2, . . . ,N} where N = W × H . As shown in Fig. 9, the NetVLAD
pooling layer consists of the following four steps (Arandjelovic
et al., 2016):

(1) Calculate a matrix U ∈ RD×M from H by:

U(:,m) =

N∑
n=1

βm(hn)(hn − om) (28)

where M is the number of the chosen clusters O = {om ∈

RD
|m = 1, 2, . . . ,M}, and βm(hn) is an assignment weight

calculated by:

βm(hn) =
exp

(
wT

mhn + bm
)∑M

m′=1 exp
(
wT

m′hn + bm′

) (29)

with {wm}, {bm} and {om} as the parameters of the network.
(2) Normalize U by ℓ2-norm column-wisely. This step is termed

as the intra-normalization.
(3) Convert the normalized U into a vector:

u = [U(:, 1)T ,U(:, 2)T , . . . ,U(:,M)T ]T (30)

(4) Normalize u by ℓ2-norm to generate an M × D dimensional
output vector. This step is termed as the ℓ2-normalization.

In addition, Xie et al. (2019) also applied a variant of NetVLAD,
amed GhostVLAD. The main difference between them is that
ome of the clusters in the GhostVLAD layer, named ‘‘ghost clus-
ers’’, are not included in the final concatenation, and hence do
ot contribute to the final representation. When aggregating the
rame-level features, the contribution of the noisy and undesir-
ble sections of a speech segment to the normal VLAD clusters
ill be effectively down-weighted, since that larger weights are
ssigned to the ‘‘ghost cluster’’. See Zhong, Arandjelović, and
isserman (2018) for the details.

.5. Learnable dictionary encoding pooling

Motivated by GMM-UBM, Cai, Chen, and Li (2018) proposed a
earnable dictionary encoding (LDE) pooling layer which models
he distribution of the frame-level features H by a dictionary.
The dictionary learns a set of dictionary component centers O =
76
Fig. 10. Spatial pyramid pooling.
Source: From Zhang, Koishida,
and Hansen (2018).

{
om ∈ Rd2 |m = 1, 2, . . . ,M

}
, and assigns weights to the

frame-level features by:

β tm =
exp(−τm∥ht − om∥

2)∑M
m′=1 exp(−τm′∥ht − om′∥2)

(31)

where the smoothing factor τm for each dictionary center om is
learnable. The aggregated output of the pooling layer with respect
to the center om is:

um =

∑T
t=1 β tm(ht − om)∑T

t=1 β tm

(32)

n order to facilitate the derivation, (32) is simplified to:

m =

∑T
t=1 β tm(ht − om)

T
(33)

Finally, the output of the pooling layer is u = [uT
1,u

T
2, . . . ,u

T
M ]

T .

6.6. Spatial pyramid pooling

In order to handle variable-length utterances, Zhang, Koishida,
and Hansen (2018) incorporated a Spatial Pyramid Pooling op-
eration into a CNN-based network, which can directly produce
fixed-length feature vectors from variable-length utterances.

As shown in Fig. 10, the spatial pyramid pooling layer outputs
a fixed length vector by first dividing the input feature maps into
1 × 1, 2×2, and 3 × 3 small patches and then performing average
pooling over these patches. An exceptional advantage of the spa-
tial pyramid pooling layer is that it maintains spatial information
of the last frame-level feature maps by making average pooling
in each local small patches.

Jung, Kim, Lim, Choi, and Kim (2019) further extracted embed-
dings from the divided small patches via a parameter-sharing LDE
layer instead of applying the averaging pooling on them.

6.7. Other temporal pooling functions

There are many other successful pooling methods. For ex-
ample, Gao et al. (2018) proposed a cross-convolutional-layer
pooling method to capture the first-order statistics for modeling
long-term speaker characteristics. Travadi and Narayanan (2019)
reported a total variability model based pooling layer. Heigold
et al. (2016) connected the last output of LSTM to the loss func-
tion for an utterance-level speaker representation. Apart from the
single-scale aggregation methods in Sections 6.1 to 6.6 which
generate the pooling output from the last frame-level layer, mul-

tiscale aggregation methods have also been proposed (Gao et al.,
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019; Hajavi & Etemad, 2019; Jung, Kye, Choi, Jung, & Kim,
020b; Seo et al., 2019; Tang et al., 2019) which utilize multiscale
eatures from different frame-level layers to generate the pooling
utput.

.8. Discussion to the temporal pooling layers

Because temporal pooling layers behave fundamentally differ-
nt in different datasets, network structures, or loss functions, it
s difficult to conclude which one is the best. To our knowledge,
emporal pooling functions with learnable parameters achieved
etter (at least competitive) results than the simple pooling layers
uch as the average pooling and statistical pooling in most cases,
ith a weakness of higher computational complexity than the

atter. Some examples are listed in Table 9.

. Deep embedding: Classification-based objective functions

The objective function largely determines the performance
f a neural network. Deep-embedding-based speaker recognition
ystems usually adopt classification-based objective functions.
efore reviewing the objective functions, we first summarize
he deep-embedding-based speaker recognition as the following
ulti-class classification problem.
Let X = {(xn, ln)|n = 1, 2, . . . ,N} denote the training samples

n a mini-batch,4 where xn ∈ Rd4 represents the input of the
ast fully connected layer, ln ∈ {1, 2, . . . , J} is the class label of
n with J as the number of speakers in the training set, and N
s the batch size. In addition, W = [w1,w2, . . . ,wJ ] and b =

b1, b2, . . . , bJ ] denote the weight matrix and bias vector of the
ast fully connected layer respectively.

In this section, we comprehensively summarize the classi-
ication based objective functions. Without loss of generality,
he ‘‘loss function’’, ‘‘cost function’’ and ‘‘objective function’’ are
quivalent in this article.

.1. The variants of softmax loss

As shown in Section 4, both the d-vector and x-vector extrac-
ors take the minimum cross entropy as the objective function,
nd take softmax as the output layer. For short, we denote the
bjective function as the Softmax loss.5 For a multiclass classifi-
ation problem, the cross-entropy error function over X can be
alculated as:

= −
1
N

N∑
n=1

J∑
j=1

tnj log pnj (34)

here [tn1, tn2, . . . , tnJ ] is a one-hot vector encoded from the label
n, in other words, tnj equals 1 if and only if sample xn belongs to
lass j. pnj is the posterior probability of xn belonging to class j.
t is produced from neural networks with the following Softmax
unction:

nj =
exp (wT

j xn + bj)∑J
j=1 exp (wT

j xn + bj)
(35)

ombining (34) and (35) derives an equivalent form of the Soft-
ax loss:

S = −
1
N

N∑
n=1

log
exp (wT

lnxn + bln )∑J
j=1 exp (wT

j xn + bj)
(36)

4 DNN is often trained using a mini-batch data in an iteration.
5 Following Liu et al. (2017), we define the softmax loss as a combination of

he last fully connected layer, softmax function, and cross-entropy loss function.
77
Fig. 11. Illustration of the angle function of the ASoftmax loss. Obviously, the
angle θln,n in the training stage is in [0, π]. If we simply multiply an integer
argin m1 to θln,n , then the angle function ψ1(·) is monotonic when θln,n ∈

0, π
m1

] only. Therefore, in practice, ψ1(·) is generalized to ψ2(·) to ensure that
the angle function is monotonically decreasing when θ ∈ [0, π].

Softmax loss is the most common objective function for deep
embedding. However, from (36), one can see that Softmax loss is
only good at maximizing the between-class distance, but does not
have an explicit constraint on minimizing the within-class vari-
ance. Therefore, the performance of deep embedding has much
room of improvement. Here we present some representative
variants of Softmax loss as follows.

• Angular softmax (ASoftmax) loss (Cai et al., 2018; Huang,
Wang, & Yu, 2018; Novoselov, Shulipa, Kremnev, Kozlov, &
Shchemelinin, 2018): Because the inner product between wj
and xn in (36) can be rewritten as:

wT
j xn = ∥wj∥ ∥xn∥ cos(θj,n) (37)

where θj,n(0 ≤ θj,n ≤ π ) denotes the angle between wj and
xn, Softmax loss can be rewritten as:

LS = −
1
N

N∑
n=1

log
exp

(
∥wln∥ ∥xn∥ cos(θln,n) + bln

)∑J
j=1 exp

(
∥wj∥ ∥xn∥ cos(θj,n) + bj

) (38)

If we further set the bias terms to zero, normalize the
weights at the forward propagation stage, and add a margin
to the angle:

bj = 0, ∥wj∥ = 1, ψ(θln,n) = (−1)a cos(m1θln,n) − 2a

(39)

then, we explicitly constrain the learned features to have
a small intra-speaker variation, where m1 ≥ 1 is an inte-
ger margin hyperparameter, θln,n ∈ [

aπ
m1
,

(a+1)π
m1

], and a ∈

{0, 1, . . . ,m1 − 1}. The intuition behind the angle function
ψ(θln,n) is illustrated in Fig. 11. Then, we obtain ASoftmax
loss as follows:

LAS =

−
1
N

N∑
n=1

log
exp

(
∥xn∥ψ(θln,n)

)
exp

(
∥xn∥ψ(θln,n)

)
+

∑J
j=1,j̸=ln exp

(
∥xn∥ cos(θj,n)

)
(40)

Note that, because m1 is limited to a positive integer instead
of a real number, the margin is not flexible enough.

• Additive margin softmax (AMSoftmax) loss (Hajibabaei &
Dai, 2018; Xie et al., 2019; Yu et al., 2019): It is a revision of
ASoftmax loss by replacing ψ(θ ) in (40) with (cos(θ )−
ln,n ln,n
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able 9
xperimental results of different temporal pooling functions selected from literature. Each row represents a comparison. The results across rows are not comparable

Comparison methods Test dataset [condition] EER

Main models Baselines Main Baseline Relative reduction

Attention (Zhu et al., 2018) Average SRE16 Cantonese 5.81% 7.33% 21%
NetVLAD (Xie et al., 2019) Average VoxCeleb1 test set 3.57% 10.48% 66%
GhostVLAD (Xie et al., 2019) Average VoxCeleb1 test set 3.22% 10.48% 69%
LDE (Villalba et al., 2020) Statistics SITW 2.50% 3.01% 17%
m2), and normalizing ∥xn∥ = 1:

LAMS =

−
1
N

N∑
n=1

log
exp

(
τ (cos(θln,n) − m2)

)
exp

(
τ (cos(θln,n) − m2)

)
+

∑J
j=1,j̸=ln exp

(
τ (cos(θj,n))

)
(41)

where τ is a scaling factor for preventing gradients too
small during the training process (Xiang et al., 2019). In ad-
dition, Zhou et al. (2020) also proposed a dynamic-additive
margin softmax, where m2 is replaced by a dynamic margin
for each training sample.

• Additive angular margin softmax (AAMSoftmax) (Liu, He,
& Liu, 2019; Xiang et al., 2019): It replaces (cos(θln,n) − m2)
in (41) by cos(θln,n + m3):

LAAMS =

−
1
N

N∑
n=1

log
exp

(
τ (cos(θln,n + m3))

)
exp

(
τ (cos(θln,n + m3))

)
+

∑J
j=1,j̸=ln exp

(
τ (cos(θj,n))

)
(42)

To further improve the convergence speed and accuracy, Rybicka
and Kowalczyk (2020) recently proposed a parameter adaptation
method which adapts the scaling factor τ and margin m3 at each
iteration.

Compared to Softmax, both ASoftmax, AMSoftmax, and AAM-
Softmax benefit from the following two aspects: first, the learned
features are angularly distributed, which matches with the cosine
similarity scoring back-end; second, they introduce an angle, i.e. a
cosine margin, to quantitatively control the decision boundary
between training speakers for minimizing the within-class vari-
ance. More information can be found in Deng, Guo, Xue, and
Zafeiriou (2019), Liu et al. (2017), Wang, Cheng, Liu, and Liu
(2018) and Wang et al. (2018).

7.2. Regularization for Softmax loss and its variants

As illustrated in Section 7.1, the learned feature by the Soft-
max loss is not discriminative enough. To address this issue,
an alternative way is to combine the Softmax loss with some
regularizers (Liu et al., 2017):

L = LS + λLRegular (43)

where λ is a hyperparameter for balancing the Softmax loss
LS and the regularizer LRegular. Besides, the regularizer is also
applicable to other Softmax variants.

Because the embedding layer that produces the embedding
speaker features is not always the last hidden layer, e.g. the x-
vector in Fig. 7, the regularizer was sometimes added to the
embedding layer. For clarity, we define the output of the embed-
ding layer as E = {(en, ln)|n = 1, 2, . . . ,N}, where en ∈ Rd5 . Here
we introduce some regularizers as follows:

• Center loss (Cai et al., 2018; Li et al., 2018; Wang, Huang,

Qian, & Yu, 2019): It is a typical regularizer for Softmax loss.

78
It explicitly minimizes the within-class variance by:

LC =
1
2

N∑
n=1

∥en − cln∥
2 (44)

where cln ∈ Rd5 denotes the lnth class center of the elements
in E . At each training iteration, the centers are updated as
follows (Li et al., 2018):

ct+1
j = ctj − ϵ∆ctj (45)

∆cj =

∑N
n=1 δ(ln = j) · (cj − en)
1 +

∑N
n=1 δ(ln = j)

(46)

where ϵ ∈ [0, 1] controls the learning rate of the centers,
the superscript ‘‘t ’’ represents the number of iterations, and
δ(·) is an indicator function. If the condition of the indicator
function, i.e. ln = j, is satisfied, then δ = 1; otherwise, δ = 0.
The center loss is usually combined with Softmax loss:

L = LS + λLC (47)

See Wen, Zhang, Li, and Qiao (2016) for more information
about the center loss.

• Ring loss (Liu et al., 2019): It restricts ∥en∥ to be close to a
target value R for AMSoftmax loss:

L = LAMS + λ×
1
N

N∑
n=1

(∥en∥ − R)2 (48)

where the target norm R is optimized during the network
training. Eq. (48) essentially applies a normalization con-
straint to the features.

• Minimum hyperspherical energy criterion
(Liu et al., 2019): It enforces the weights of the output layer
to distribute evenly on a hypersphere:

L = LAMS +
λ

N(J − 1)

N∑
n=1

J∑
j=1,j̸=ln

h(∥ŵln − ŵj∥) (49)

where ŵln and ŵj are the ℓ2-normalized wln and wj respec-
tively, and h(z) =

1
z2

is a decreasing function. Intuitively, the
minimum hyperspherical energy based regularizer enlarges
the inter-class separability.

• Gaussian prior (Li, Tang, Shi, & Wang, 2019): To reduce
information leak, Li, Tang, Shi, and Wang (2019) introduced
a Gaussian prior to the output of the embedding layer, which
results in the following objective function:

L = LS + λ
∑

j

∑
en∈ε(j)

∥en − wj∥ (50)

where ε(j) is the set of the utterances belonging to the
jth speaker, en represents the x-vector, wj represents the
parameters of the last layer corresponding to the output unit
of speaker j.

• Triplet loss (Jati et al., 2019): Because Softmax loss does
not explicitly reduce intra-class variance, triplet loss was
introduced to directly bring samples from the same class
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closer than the samples from different classes. Formally, the
triplet loss weighted Softmax loss is written as:

L = λLS + (1 − λ)LTriplet (51)

where LTriplet denotes the triplet loss, which will be intro-
duced in Section 8.

here are also many other regularization approaches. For ex-
mple, Yu et al. (2019) added a Hilbert–Schmidt independence
riterion based constraint to the embedding layer for regularizing
MSoftmax loss LAMS. See Yu et al. (2019) for the details.

.3. Multi-task learning for deep embedding

Phonetic information is important in improving the perfor-
ance of speaker recognition. As illustrated in Section 3, one
ay to incorporate phonetic information into the i-vector-based
ystems is to employ an ASR acoustic model, e.g. the DNN-UBM/i-
ector or the DNN-BNF/i-vector. As for the deep-embedding-
ased speaker recognition, the phonetic information was usually
ncorporated by multi-task learning. For example, Chen, Qian,
nd Yu (2015b) and Liu et al. (2015) trained a deep embedding
etwork to discriminate the speaker identity and text phrases
imultaneously. The training objective is to minimize:

E([l1, l2], [l ′1, l
′

2]) = CE1(l1, l ′1) + CE2(l2, l ′2) (52)

here CE1 and CE2 are two cross-entropy criteria for speaker
nd text phrase respectively. l1 and l2 indicate the true labels for
peakers and text individually, and l ′1 and l ′2 are the two outputs
f the network respectively. Some similar ideas can also be found
n Dey, Koshinaka, Motlicek, and Madikeri (2018).

Although the text content may be a harmful source to text-
ndependent speaker recognition, some positive results were ob-
erved with the multi-task learning. The authors in Liu et al.
2018) added phonetic information to the frame-level layers of
he x-vector extractor with an auxiliary ASR acoustic model by
ulti-task learning. The authors in Wang et al. (2019) conjec-

ured that the phonetic information is helpful for frame-level
eature learning, however, it is useless in utterance-level speaker
mbeddings. They experimentally verified their assumptions by
ultitask learning and adversarial training, where the phonetic

nformation was used as positive and negative effects respec-
ively.

Besides the phonetic information mining, some multi-task
earning approaches intend to improve the performance of the
uxiliary and main tasks together. For example, Tang, Li, Wang,
nd Vipperla (2016) proposed a collaborative learning approach
ased on multi-task recurrent neural model to improve the per-
ormance of both speech and speaker recognition. Yao and Mak
2018) proposed a multitask DNN structure to denoise i-vectors
nd classify speakers simultaneously. Considering that the acous-
ic and speaker domains are complementary, Jung, Jung, Goo, and
im (2020a) recently proposed a multi-task network that per-
orms keyword spotting and speaker verification simultaneously
o fully utilize the interrelated domain information.

.4. Discussion to the classification-based loss functions

Because speaker verification is an open set recognition task,
he deep embedding space produced from a training dataset with
limited number of speakers is required to generalize well to
nseen test speakers. Therefore, it is the speaker discriminative
bility of the embedding rather than the classification accuracy
hat is important, which accounts for the motivation why many
lassification-based loss functions are designed to minimize the
79
ithin-class variance by adding a margin or a regularizer into the
oftmax loss.
From the experimental results in literature, one can concluded

hat the design of loss functions is very important to perfor-
ance. At present, nearly all state-of-the-art deep embedding
ystems replaced the traditional Softmax by its variants, espe-
ially AMSoftmax and AAMSoftmax. In addition, the Softmax
oss, its variants and regularizers are not mutually exclusive. For
nstance, the regularization terms (48) and (49) were originally
dded to AMSoftmax (Liu et al., 2019).

. End-to-end speaker verification: Verification-based objec-
ive functions

An emerging direction of speaker recognition is end-to-end
peaker verification. It is able to produce the similarity score of
pair of utterances in a test trial directly. The main difference
etween deep embedding and end-to-end speaker verification
s the objective function. Therefore, in this section, we mainly
eview the verification-based loss functions, and skip the other
omponents that are similar to deep embedding, e.g. the network
tructures or temporal pooling layers.
Here we emphasize that the borderline between the

lassification-based deep embedding and verification-based end-
o-end speaker verification is unclear in literature. Some work
lso called the end-to-end speaker verification systems as deep
mbedding extractors. The main reason for this confusion is
hat, although the end-to-end speaker verification systems have
ifferent objective functions and training strategies from the
eep embedding extractors, they need to extract utterance-level
peaker embeddings from the hidden layers as the input of some
ndependent back-ends, e.g. PLDA, in the test stage, so as to
chieve the state-of-the-art performance. Despite the confusion
sage of the terms in literature, here we clearly regard the
peaker verification systems whose loss functions yield similarity
cores from training trials as end-to-end speaker verification.
In this section, we focus on summarizing verification-based

bjective functions, each of which needs to address the following
hree core issues:

• How to design a training loss that pushes DNN towards our
desired direction: As shown in Fig. 1, speaker verification
can be viewed as a binary classification problem of whether
a pair of utterances are from the same speaker. A natural
solution to this problem is to train a binary classifier in
an end-to-end fashion from a large number of manually
constructed pairs of training utterances, i.e. training trials.
The training loss of the binary classifier largely determines
the effectiveness of the classifier.

• How to define a similarity metric between a pair of ut-
terances: The similarity of a pair of utterances is calcu-
lated from the embeddings of the utterances at the output
layer where a proper similarity metric for evaluating the
similarity between the embeddings boosts the performance.

• How to select and construct training trials from an expo-
nentially large number of training trials: Because the num-
ber of all possible training trials is at least the square of the
number of training utterances, and also because many of the
training trials are less informative, we need to select or even
construct some informative training trials instead of using
all training trials.

.1. Pairwise loss

Pairwise loss is a kind of training loss of the end-to-end
peaker verification where each training trial contributes to the



Z. Bai and X.-L. Zhang Neural Networks 140 (2021) 65–99

a
p
{

s

v
v
e
e
s

c

L

i
i

d
a

P

P

ccumulation of the training objective value independently. Sup-
ose there is a set of pairwise training trials as Xpair =

(xen, xtn; ln)|n = 1, 2, . . . ,N} where xen and xtn denote a pair of
peaker embedding features at the output layer, and ln ∈ {0, 1} is
the ground-truth label. If xen and xtn belong to the same speaker,
then ln = 1; otherwise, ln = 0.

Binary cross-entropy loss is the most common pairwise
loss (rahman Chowdhury et al., 2018; Heigold et al., 2016; Rohdin
et al., 2018; Snyder et al., 2016; Zhang, Chen, Zhao, Li, & Gong,
2016; Zhang et al., 2019):

LBCE = −

N∑
n=1

[
ln ln

(
p(xen, x

t
n)

)
+η(1− ln) ln

(
1− p(xen, x

t
n)

)]
(53)

where η is a balance factor between positive (ln = 1) and negative
(ln = 0) trials, and p(xen, xtn) denotes the acceptance probability,
i.e. the probability of xen and xtn belonging to the same speaker.
The reason why there needs a balance factor is that the number
of the negative trials is usually much larger than that of positive
trials. The difference between the variants of the binary cross-
entropy loss is on the calculation method of p(xen, xtn) which is
summarized as follows:

• In Heigold et al. (2016) and rahman Chowdhury et al. (2018),
the authors applied sigmoid function to cosine similarity:

p(xen, x
t
n) =

1
1 + exp

(
−wS(xen, xtn) − b

)
S(xen, x

t
n) =

xeTn xtn
∥xen∥ ∥xtn∥

(54)

where w and b are two learnable parameters, and −b/w
corresponds to the verification threshold. Some similar idea
can also be found in Zhang et al. (2016).

• In Snyder et al. (2016), the authors further introduced a
PLDA-like similarity metric:

p(xen, x
t
n) =

1
1 + exp

(
−S(xen, xtn)

)
S(xen, x

t
n) = (xen)

Txtn − (xen)
TSxen − (xtn)

TSxtn + b
(55)

where S and b are learnable parameters. Another similar
PLDA-based similarity metric was proposed in Rohdin et al.
(2018).

• The third calculation method is to learn a score from a joint
vector xe,tn by Zhang et al. (2019):

p(xen, x
t
n) =

1
1 + exp

(
−se,tn

)
se,tn = S(xe,tn )

(56)

where se,tn is a scalar produced from a fully-connected feed-
forward neural network S(·), and xe,tn is a joint vector of
xen and xtn produced by a sequence-to-sequence attention
mechanism (Zhang et al., 2019). Similar ideas can also be
found in Heo, Jung, Yang, Yoon, and Yu (2017).

The training trials of the aforementioned end-to-end speaker
erification are constructed from two utterances. To reduce the
ariability of the training trials, some work (rahman Chowdhury
t al., 2018; Heigold et al., 2016; Zhang et al., 2016) obtains the
mbedding of the enrollment speech xen from an average of a
mall amount of utterances.
Contrastive loss (Chung et al., 2018; Yu et al., 2019) is another

ommonly used pairwise loss:

C =
1
2N

N∑(
lnd2n + (1 − ln)max(ρ − dn, 0)2

)
(57)
n=1

80
where dn denotes the Euclidean distance between xen and xtn,
and ρ is a manually-defined margin. Unfortunately, training an
end-to-end network with the contrastive loss is notoriously dif-
ficult. In order to avoid bad local minima in the early training
stage, Chung et al. (2018) proposed to first pre-train a speaker
embedding system using Softmax loss, and then fine-tune the
system with the contrastive loss. Wan et al. (2018) proposed a
generalization of the contrastive loss as follows:

LGC =

N∑
n=1

(
ln
(
1 − p(xen, x

t
n)

)
+ (1 − ln) max

xen∈{cj′ }
J′
j′=1

p(xen, x
t
n)

)
(58)

where p(xen, xtn) is the same as (54), and cj′ with j′ = 1, 2, . . . , J ′
s the speaker centroid of the jth speaker in a mini-batch which
s obtained by averaging the utterances that belong to the j′th
speaker.

Besides the above two common training losses, some other
loss functions are as follows. In Gao et al. (2019), the authors pro-
posed a discriminant analysis loss LDALoss to learn discriminative
embeddings:

LDALoss = η1Lintra + η2Linter (59)

where η1 and η2 are the weights of the two loss items, and
Lintra and Linter are described as follows. Lintra represents the
intra-speaker variabilities which is defined as:

Lintra =

J ′∑
j′=1

C j′∑C j′

k=1
1

dk(x
j′
n1 ,x

j′
n2 )

(60)

where j′ = 1, 2, . . . , J ′ denotes the index of the training speaker
in each mini-batch, and dk(x

j′
n1 , x

j′
n2 ) denotes the kth largest

squared Euclidean distance between the embeddings of the j′th
speaker. The overall cost is the mean of the first C j′ th largest
distances within each speaker. Linter represents the inter-speaker
variabilities:

Linter = max(0, ζ − min(d(̃xj
′
1 , x̃j

′
2 ))) (61)

where x̃j
′
1 and x̃j

′
2 denote the centers of the feature vectors of the

j′1th and j′2th speakers respectively with j′1 ̸= j′2 ∈ {1, 2, . . . , J ′},
(·) denotes the distance (e.g. the squared Euclidean distance),
nd ζ denotes a margin. Thus, minimizing Linter is equivalent to

maximizing the distances between the centers to be larger than
the minimum margin ζ .

In Mingote, Miguel, Ribas, Giménez, and Lleida (2019), the
authors proposed to minimize both the empirical false alarm rate
Pfa and miss detection rate Pmiss:

L = η1 · Pfa(ξ ) + η2 · Pmiss(ξ ) (62)

miss(ξ ) =

∑N
n=1 ln δ

(
S(xen, xtn) < ξ

)
∑N

n=1 δ(ln = 1)
(63)

fa(ξ ) =

∑N
n=1(1 − ln) δ

(
S(xen, xtn) > ξ

)
∑N

n=1 δ(ln = 0)
(64)

where δ(·) denotes an indicator function, ξ denotes a decision
threshold which is optimized with the neural network, and η1
and η2 are two tunable hyperparameters. The score S(xen, xtn) is
obtained from the output linear layer of the neural network,
where the number of units of the output layer equals the number
of the speakers in the training data. Specifically, it uses a batch of
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nput vectors {xi}Ii=1 and the parameters {wj, bj}
J
j=1 of the output

inear layer to construct training trials in a mini-batch:

(xen, x
t
n) = (xen)

Txtn + ben, (65)

here (xen, ben) ∈ {wj, bj}
J
j=1 and xtn ∈ {xi}Ii=1. To make (63) and

64) differentiable, the indicator function δ(z > 0) is relaxed to a
igmoid function σ (z) = 1/(1 + exp (−z)).

.2. Triplet loss

Triplet loss is a kind of training loss that each training sam-
le that contributes to the accumulation of the training objec-
ive value independently is constructed from three utterances. A
riplet training sample consists of three utterances, including an
nchor utterance, a positive utterance that is produced from the
ame speaker as the anchor utterance, and a negative utterance
rom a different speaker. Suppose the speaker features of a train-
ng sample produced from the top hidden layer are xa (anchor), xp
positive), and xn (negative), respectively. We denote the training
et as Xtrip = {(xan, x

p
n, xnn)|n = 1, 2, . . . ,N}.

Triplet loss designs a margin-based loss to push the positive
tterance xpn closer to the anchor xan than the negative utterance
n
n in a trial as shown in Fig. 12. For any training sample in Xtrip,
e require:

an
n − sapn + ζ ≤ 0 (66)

here, without loss of generality, sann denotes the cosine similarity
etween xa and xn, sapn denotes the cosine similarity between xa
nd xp, and ζ ∈ R+ is a manually-defined safety margin between
ositive and negative pairs. Note that sann and sapn could be the
cores of any similarity measurement instead of merely the cosine
imilarity. Given (66), the triplet loss is defined as:

trip =

N∑
n=1

max(0, sann − sapn + ζ ) (67)

Cosine similarity (Li et al., 2017) and squared Euclidean
istance (Bredin, 2017; Huang, Wang, & Qian, 2018; Zhang &
oishida, 2017) are the most common similarity metric for the
riplet loss. Before calculating the similarities, each speaker em-
edding in the training samples needs to be length-normalized.
t is easy to prove that the two similarity metrics are equiv-
lent (Bai, Zhang, & Chen, 2020b; Zhang, Koishida, & Hansen,
018) after the length normalization. Besides the two similar-
ty metrics, the authors in Dey, Madikeri, and Motlicek (2018)
roposed several distance functions to explore phonetic informa-
ion for text-dependent speaker verification. They first compute
he Euclidean distance between any pair of frame-level hidden
epresentations of the two input utterances H1 = {h1,t1 |t1 =

, 2, . . . , T1} and H2 = {h2,t2 |t2 = 1, 2, . . . , T2} via D =

d(h1,t1 ,h2,t2 )|t1 = 1, 2, . . . , T1, t2 = 1, 2, . . . , T2} ∈ RT1,T2 . Then,
hey integrate the T1 ×T2 frame-level Euclidean distances into an
tterance-level similarity score of H1 and H2 by, e.g. the attention
echanism.
Given a training set, we can see that the number of all possible

riplet training samples is cubically larger than the number of
raining utterances. It is neither efficient nor effective to enumer-
te all possible triplets (Bredin, 2017), and only those that violate
he constraint of sann − sapn + ζ ≤ 0 contributes to the training
rocess. Therefore, how to select informative triplet training sam-
les is fundamental to the effectiveness of the model training. In
ractice, the ‘‘hard negative’’ sampling strategy is popular (Bredin,
017). It consists of the following two steps at each epoch:

(1) Randomly sample m utterances from each of the M speakers
of the training set, which constructs Mm(m − 1)/2 anchor-

positive pairs.

81
Fig. 12. Triplet loss based on cosine similarity.
Source: From Li et al. (2017).

Fig. 13. Illustration of the ROC curve, AUC, and pAUC.
Source: From Bai et al. (2020a).

(2) For each of the anchor-positive pairs, randomly choose one
negative utterance that satisfies sann − sapn + ζ > 0 from the
(M − 1)m negative candidates.

Several variants of the ‘‘hard negative’’ sampling were proposed
as well. For example, Zhang and Koishida (2017) changed the first
step by randomly selecting a small number of speakers from the
speaker pool instead of from all speakers. In Huang, Wang, and
Qian (2018), the authors divided training speakers into different
groups and constructed each triplet training sample from a single
group. Besides the ‘‘hard negative’’ sampling, the ‘‘semi-hard’’
negative sample selection (Jati et al., 2019; Schroff, Kalenichenko,
& Philbin, 2015) and softmax pre-training (Li et al., 2017) are all
used to stabilize the training process of the triplet loss.

8.3. Quadruplet loss

Quadruplet loss is a kind of training loss for end-to-end
speaker verification where each training sample that contributes
to the accumulation of the training objective value independently
is constructed from four utterances. Suppose there are a positive
pairwise training set Xsame = {(xen1 , x

t
n1 )|n1 = 1, 2, . . . ,N1}

nd a negative pairwise training set Xdiff = {(xen2 , x
t
n2 )|n2 =

, 2, . . . ,N2} respectively, where xen1 and xtn1 are from the same
peaker while xen2 and xtn2 are from different speakers. We have
same ∪ Xdiff = Xpair. Currently, the quadruplet loss is formulated
s the maximization of the partial interested area under the ROC
urve (pAUC) (Bai et al., 2020a).
The maximization of pAUC is to maximize an interested gray

rea of Fig. 13 that is defined by two hyperparameters α and β .
t has the following three steps:

(1) Rank the similarity scores of all pairwise trials in Xdiff in
descending order, and selecting those elements that rank
between the (⌈N2 × α⌉ + 1)th to ⌊N2 × β⌋th positions to
construct X ′

diff = {(xen3 , x
t
n3 )|n3 = 1, 2, . . . ,N3} where N3 =

⌊N2 × β⌋ − (⌈N2 × α⌉ + 1).
(2) Calculate pAUC on Xsame and X ′

diff:

pAUC = 1−
1

N1N3

N1∑ N3∑(
δ(sn1 < sn3 )+

1
2
δ(sn1 = sn3 )

)
(68)
n1=1 n3=1
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where δ(·) denotes the indicator function, and sn1 and sn3
denote the cosine similarity of the pairwise trials in Xsame and
X ′

diff respectively.
(3) Relax the indicator function by the hinge loss which reformu-

lates (68) to:

LpAUC =
1

N1N3

N1∑
n1=1

N3∑
n3=1

max
(
0, ζ −

(
sn1 − sn3

))2
(69)

where ζ is a margin hyperparameter.

It can be seen clearly that (69) is a quadruplet loss, since that
(sn1 − sn3 ) is calculated from four utterances.

Bai et al. (2020a) proposed two training sample construction
methods. The first one is named random sampling. For a mini-
batch, it first randomly chooses a mini-batch number of speakers,
then randomly selects two utterances for each of the selected
speaker, and finally generates the training trials of the batch by
pairing all the selected utterances. The second one is named class-
center learning. Before training, it first assigns a class center to
each speaker in the training set. Then, for each training iteration,
it generates the training trials of a mini-batch by pairing each of
the class centers with each of the utterances in the batch, where
the class centers are updated together with the DNN parameters.

The pAUC based loss has several advantages: (i) it directly
optimizes the detection error tradeoff (DET) curve which is the
major evaluation metric of speaker verification (Bai et al., 2020b);
(ii) it naturally overcomes the class-imbalanced problem; (iii) it is
able to select difficult quadruplet training samples by setting α =

0 and β to a small value, e.g. 0.01; (iv) triplet training samples
is a subset of quadruplet training samples when given the same
training utterances (Bai et al., 2020b). Actually the pAUC should
be calculated on the entire dataset, however, due to the limited
computation resource, (68) is an empirical approximation to it
within a mini-batch. Therefore, a large batch size is usually set to
reduce the approximation error as much as possible. Fortunately,
experimental results demonstrate that a good approximation can
be obtained with a batch size of no larger than 512.

8.4. Prototypical network loss

In Wang, Wang, Law, Rudzicz, and Brudno (2019), the proto-
typical network loss (Snell, Swersky, & Zemel, 2017), which was
originally proposed for few-shot learning, was applied to speaker
embedding models. Suppose that a mini-batch contains a support
set of N labeled samples S = {(xn, ln)|n = 1, 2, . . . ,N} where
ln ∈ {1, 2, . . . , J} is the label of the sample xn, and Sj denotes the
set of all samples of class j. Then, the prototype of each class is
the mean vector of the support points belonging to the class:

cj =
1

|Sj|

∑
(xn,ln)∈Sj

xn, j = 1, 2, . . . , J (70)

iven a query set Q = {(xq, lq)|q = 1, 2, . . . ,Q } with lq ∈

1, 2, . . . , J}, the prototypical network loss classifies each query
oint xq against J prototypes {cj|j = 1, 2, . . . , J} via a softmax
unction:

PNL = −

∑
(xq,lq)∈Q

log
exp

(
−d

(
xq, clq

))
∑J

j′=1 exp
(
−d

(
xq, cj′

)) (71)

here d(·) denotes the squared Euclidean distance.
For each mini-batch, Wang, Wang, Law, Rudzicz, and Brudno

2019) first randomly select a number of speakers from the train-
ng speaker pool, and then randomly choose a support set and a
uery set for each of the selected speakers, where the samples
 s

82
of the support set and query set do not overlap. Similar works
were also conducted in Anand, Singh, Srivastava, and Lall (2019),
Chung et al. (2020) and Kye, Jung, Lee, Hwang, and Kim (2020).

Before Wang, Wang, Law, Rudzicz, and Brudno (2019), Wan
et al. (2018) proposed a generalized end-to-end loss based on
the softmax function, which shares a similar idea with the pro-
totypical network loss except that it uses a single set as both the
support and query sets. In addition, Wei, Du, and Liu (2020) re-
cently proposed an AM-Centroid loss which replaced the weights
of the AAMSoftmax loss function with speaker centroids proposed
in Wan et al. (2018). This loss function aims to overcome the
weakness of the AAMSoftmax loss based deep networks whose
number of parameters at the output layer grows linearly with the
number of training speakers.

8.5. Other end-to-end loss functions

Some loss functions cannot be categorized to the above cat-
egories. For example, given learnable speaker bases {wj}

J
j and a

mini-batch of utterances {(xn, ln)}Nn where ln ∈ {1, 2, . . . , J}, Heo
et al. (2019) proposed a between-class variation based loss LBC,

LBC =

J∑
j2=1

J∑
j1=1,j1 ̸=j2

wT
j1
wj2

∥wj1∥ ∥wj2∥
(72)

nd a hard negative mining loss LH,

H =

N∑
n=1

∑
wh∈Hardn

log
(
1 + exp

(
S(wh, xn) − S(wln , xn)

))
(73)

here xn denotes the nth utterance, wln denotes the basis that
n belongs to, S(·) is the cosine similarity, and Hardn is a set of
o-called hard negative speaker bases of xn which correspond to
he top H largest values in {S(wj, xn)|j ̸= ln, j = 1, 2, . . . , J}.

.6. Discussion to the verification-based loss functions

The verification-based loss functions are fundamentally dif-
erent from the classification-based loss functions in at least
he following aspects. First, speaker verification is essentially an
pen-set metric learning problem instead of a closed set classifi-
ation problem. The verification-based losses are consistent with
he test pipeline, which directly outputs verification scores.

Second, the output layers of the verification-based losses are
ery small and irrelevant to the number of training speakers,
hich is an important advantage of the verification-based meth-
ds over classification-based methods. Specifically, the number
f parameters of a classification-based network at the output
ayer grows linearly with the increase of the number of training
peakers, which make the network large-scale and easily over-
it to the training data. For example, if a training set consists
f 50000 speakers and if the top hidden layer of a classifica-
ion network has 512 hidden units, then the output layer of
he network contains 25.6 million parameters. On the contrary,
he verification-based systems do not suffer the aforementioned
eakness. Aware of this issue, Wei et al. (2020) tried to solve
he parameter explosion problem by drawing lessons from the
rototypical network loss.
The main weakness of the verification-based systems is that

hey are harder to train than the classification-based systems,
ince that they need to construct a large number of training trials
nd then select those that contributes significantly to the effec-
iveness of the systems, while the classification-based systems
ust classify each training utterance to its corresponding speaker.
o overcome this weakness, many sample selection strategies for

electing highly-informative trials have been developed, such as
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he hard negative sampling in the triplet loss and the pAUC op-
imization in the quadruplet loss. Because the highly-informative
rials are dynamically changing during the training process, the
ptimization process is not very stable and consistent. Some
nstable examples include the triplet loss or pAUC maximization
ith the random sampling strategy. Fortunately, this weakness
an be alleviated by constructing trials with speaker centroids via,
.g. the class-center learning (Bai et al., 2020a).
In respect of the performance, although the classification-

ased systems outperformed the verification-based systems once,
ecently results shown that the latter can achieve competitive
erformance with the former (Bai et al., 2020a; Kye et al., 2020).
A remark: the term ‘‘end-to-end’’ in this section intends to

ake a difference from the embedding systems in Section 7.
owever, the term in many other speech processing tasks, which
akes raw wave signals as the input and directly output decisions,
s broader than the concept here. From the broader concept of
‘end-to-end’’, an end-to-end speaker verification system needs
o further integrate additional procedures, including the voice
ctivity detection, cepstral mean and variance normalization, into
he network. It also has to prevent using additional back-ends,
uch as PLDA (Lin & Mak, 2020).

. Speaker diarization

In this section, we overview four kinds of speaker diariza-
ion technologies—stage-wise diarization, end-to-end diarization,
nline diarization, and multimodal diarization, where the stage-
ise diarization has been studied for a long time, while the last
hree are emerging directions.

.1. Stage-wise speaker diarization

Stage-wise speaker diarization is composed of multiple inde-
endent modules. As shown in Fig. 14, most stage-wise speaker
iarization systems consist of four modules—voice activity de-
ection, speech segmentation, speaker feature extraction, and
peaker clustering. Some systems also have an optional re-
egmentation module. This subsection briefly reviews deep learn-
ng based methods for each module. Voice activity detection
etects speech in an audio recording and removes non-speech
egions. Although it is an important module, it is usually stud-
ed independently. Therefore, we focus on reviewing the other
odules.

.1.1. Speech segmentation
Speech segmentation splits speech into multiple speaker-

omogeneous segments where each segment belongs to a single
peaker. It usually can be categorized to two classes—uniform
egmentation and speaker change detection (SCD). Uniform seg-
entation divides a long audio stream into short segments evenly
y a sliding window (Garcia-Romero, Snyder, Sell, Povey, & Mc-
ree, 2017; Lin et al., 2020; Pal et al., 2020; Sell et al., 2018;
ang, Downey, Wan, Mansfield, & Moreno, 2018). For example,
1.5 s sliding window with 0.75 s overlap is a common setting
f uniform segmentation.
SCD partitions an audio recording according to the detected

peaker change points, which results in non-uniform segments.
enerally, it first partitions an audio recording into small seg-
ents, then computes the similarity between the two adjacent
peech segments in terms of the distance between their represen-
ations, and finally decides whether the two adjacent segments
re produced from the same speaker by thresholding the dis-
ance or finding a local extremum in the consecutive distance
tream (Bredin, 2017). A common method for segmenting the
83
audio recording into short segments is to use a sliding win-
dow (Bredin, 2017; Wang, Gu, Li, Xu, & Zheng, 2017). Recently, an
ASR based segmentation (Aronowitz & Zhu, 2020; Sarı, Thomas,
Hasegawa-Johnson, & Picheny, 2019) is also employed.

Conventional SCD algorithms usually adopt common hand-
crafted features, e.g. MFCC, as the acoustic representation (Chen,
Gopalakrishnan, et al., 1998; Siegler, Jain, Raj, & Stern, 1997).
An important advantage of the conventional methods is that
only the step of tuning the threshold needs some experience,
while the other parts do not need training (Yin, Bredin, & Barras,
2017). Recently, the deep speaker embedding features are used
as the representation of speech segments instead of conventional
handcrafted features (Aronowitz & Zhu, 2020; Bredin, 2017; Jati
& Georgiou, 2018; Sarı et al., 2019; Wang et al., 2017).

To calculate the similarity between two adjacent segments,
Euclidean distance (Bredin, 2017) and cosine similarity (Wang
et al., 2017) are two common similarity measurements. Some
methods also feed two (Jati & Georgiou, 2018; Sarı et al., 2019) or
more (Aronowitz & Zhu, 2020) consecutive embeddings together
into a pre-trained DNN to predict the similarity between two
adjacent segments. Recently, some work formulates SCD as a
sequence labeling task, which directly predicts if there is a change
point in a speech segment (Hrúz & Zajíc, 2017; Yin et al., 2017;
Zajíc, Hrúz, & Müller, 2017).

To summarize, on one side, the uniform segmentation is sim-
ple and works fine in many cases, which is the choice of many
real-world diarization systems (Aronowitz & Zhu, 2020; Lin et al.,
2020; Sell & Garcia-Romero, 2014); on the other side, the research
on SCD is important not only for speaker diarization but also
for many other applications, such as the closed captioning of
broadcast television for hearing-impaired people (Aronowitz &
Zhu, 2020).

9.1.2. Speaker feature extraction
The speaker feature extraction module in diarization shares

similar technologies with speaker verification. Both of them map
speech segments into speaker embeddings by i-vector (Sell &
Garcia-Romero, 2014), DNN-UBM/i-vector (Sell, Garcia-Romero, &
McCree, 2015), x-vector (Diez, Burget, Landini, Wang, & C̆ernocký,
2020; Diez, Burget, Wang, Rohdin, & Cernockỳ, 2019; Landini
et al., 2020; Sell et al., 2018), or some other deep embedding
extractors (Sun, Zhang, & Woodland, 2019; Wang, Downey, Wan,
Mansfield, & Moreno, 2018; Yella & Stolcke, 2015). See Sec-
tions 3 to 8 for the details. Here we only review some em-
bedding methods that utilize additional information for speaker
diarization. The authors in Higuchi, Suzuki, and Kurata (2020)
incorporated acoustic conditions, such as the distances between
speakers and microphones in a meeting or the channel conditions
of different speakers in a telephone conversation, into the speaker
embeddings, given the fact that the acoustic conditions provide
discriminative information for diarization. Wang et al. (2020)
utilized a graph neural network to refine speaker embeddings,
where the local structural information between speech segments
is utilized as additional information.

9.1.3. Speaker clustering
Given the segment-level embedding features of an audio

recording, speaker clustering aims to partition the speech seg-
ments into several groups, each of which belongs to a single
speaker. It first defines a similarity measurement for evaluating
the similarity of two segments, and then conducts clustering
according to the similarity scores. Popular similarity measure-
ments include cosine similarity (Wang, Downey, Wan, Mans-
field, & Moreno, 2018) and PLDA-bases similarity (Sell & Garcia-
Romero, 2014; Sell et al., 2018). Recently, some deep-learning-
based similarity measurements were also introduced, such as
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Fig. 14. Diagram of the stage-wise speaker diarization, where speech re-segmentation is an optional module.
he LSTM-based scoring (Lin, Yin, Li, Bredin, & Barras, 2019),
elf-attentive similarity measurement strategies (Lin, Hou, & Li,
020b), and joint training of speaker embedding and PLDA scor-
ng (Garcia-Romero et al., 2017). Common clustering algorithms
nclude k-means (Wang, Downey, Wan, Mansfield, & Moreno,
018), agglomerative hierarchical clustering (Sell et al., 2018),
pectral clustering (Lin, Yin, Li, Bredin, & Barras, 2019; Wang,
owney, Wan, Mansfield, & Moreno, 2018), Bayesian Hidden
arkov Model based clustering (Diez et al., 2020; Diez et al.,
019; Landini et al., 2020) etc. Recently, Zhang (2018) proposed
non-neural-network deep model, named multilayer bootstrap
etworks, and applied it to speaker clustering (Li & Zhang, 2018;
hang, 2016), which demonstrates competitive performance to
he common speaker clustering algorithms. However, these clus-
ering algorithms are unsupervised, which is difficult to utilize
anually-labeled training data, e.g. the time-stamped speaker
round truth (Zhang, Wang, Zhu, Paisley, & Wang, 2019).
To address the problem, some work formulated speaker clus-

ering as a semi-supervised learning problem (Milner & Hain,
016; Yu & Hansen, 2017). Specifically, Milner and Hain (2016)
uilt a new DNN iteratively from a pre-trained speaker separation
NN for the speaker clustering of each audio file. In Yu and
ansen (2017), the authors proposed an active-learning-based
peaker clustering algorithm, which needs some involvement of
uman labor during the clustering process.
Some work formulated speaker clustering as a supervised

earning problem (Fini & Brutti, 2020; Li, Kreyssig, Zhang, &
oodland, 2019; Zhang, Wang, Zhu, Paisley, & Wang, 2019).

pecifically, Li, Kreyssig, Zhang, and Woodland (2019) and Zhang,
ang, Zhu, Paisley, and Wang (2019) defined the speaker labels
f training data according to their first appearance in the training
ata. As shown in Fig. 15, given a sequence of speech segments

= {(en, ln)|n = 1, 2, . . . ,N} where ln ∈ {A, B, C,D, E, . . .}
s the ground truth label of the nth segment with each capital
etter representing a speaker, the training label of the sequence
n ∈ {1, 2, 3, 4, 5, . . .} is tagged with positive integers in the
order of the speaker appearance in the sequence. For exam-
ple, the training labels of the two sequences [E,A, C,A, E, E, C]

and [A, C,A, B, B, C,D, B,D] are tagged as [1, 2, 3, 2, 1, 1, 3] and
1, 2, 1, 3, 3, 2, 4, 3, 4] respectively. Under this labeling
manner, Zhang, Wang, Zhu, Paisley, and Wang (2019) trained a
parameter-sharing RNN clustering model in a supervised way
by multiple-instance-learning. They further integrated the RNN
with a distance-dependent Chinese restaurant process to address
the difficult problem of the unknown number of speakers. An
improvement to Zhang, Wang, Zhu, Paisley, and Wang (2019)
was further presented in Fini and Brutti (2020). Additionally,
the clustering procedure was also modeled by a discriminative
sequence-to-sequence neural network (Li, Kreyssig, Zhang, &
Woodland, 2019).

9.1.4. Speech re-segmentation
Re-segmentation is an optional step after the speaker cluster-

ing. It refines speech boundaries between the speech segments.
Variational-Bayesian refinement (Diez, Burget, & Matejka, 2018;
Sell & Garcia-Romero, 2015; Sell et al., 2018) is the most fa-
mous conventional method. Recently, deep learning based re-
segmentation methods were also developed. For example, fol-

lowing the successful application of the RNN to voice activity

84
Fig. 15. Two examples of the training label sequence definition of the supervised
clustering in Li, Kreyssig, Zhang, and Woodland (2019).
Source: From Li, Kreyssig, Zhang, and Woodland (2019).

detection and SCD, Yin, Bredin, and Barras (2018) proposed to
address re-segmentation with LSTM.

9.1.5. Speech overlap detection
Most stage-wise speaker diarization systems simply assume

that only one person is speaking at any time. In other words,
they do not consider the speech overlap problem. However,
speech overlap is one of the most important factors that hin-
der the diarization performance (Lin et al., 2020; Ryant et al.,
2018, 2019; Sell et al., 2018), since it happens frequently in
practice, e.g. a fast multi-speaker conversation. There have been
several traditional studies on overlap detection for speaker di-
arization (Boakye, Trueba-Hornero, Vinyals, & Friedland, 2008;
Huijbregts, van Leeuwen, & Jong, 2009; Otterson & Ostendorf,
2007; Yella & Bourlard, 2014). Recently, some deep learning based
speech overlap detection methods were also proposed (Bullock,
Bredin, & Garcia-Perera, 2020; Huang et al., 2020). Specifically,
Bullock et al. (2020) first addressed the overlapped speech de-
tection as a sequence labeling problem by an LSTM-based archi-
tecture, and then assigned the detected overlap regions to two
speakers by a simple yet effective overlap-aware re-segmentation
module. In Huang et al. (2020), a region proposal network
was first used to detect overlapped speech, and then removed
the highly overlapped segments in the post-processing stage. In
addition to the above methods, end-to-end speaker diarization,
which will be reviewed in the next section, is another way to
deal with the speech overlap problem.

9.2. End-to-end speaker diarization

Because conventional clustering algorithms are unsupervised,
it cannot minimize the diarization error rate directly (Fujita,
Watanabe, Horiguchi, Xue, & Nagamatsu, 2020) and is diffi-
cult to deal with the speech overlap problem (Fujita, Watanabe,
Horiguchi, Xue, & Nagamatsu, 2020). Moreover, because each
module of the stage-wise speaker diarization in Fig. 14 is opti-
mized independently, the performance is difficult to be boosted.
Although several semi-supervised and supervised speaker clus-
tering methods have recently been proposed, the potential of
deep neural networks, which are mainly used to extract speaker
embeddings in the stage-wise speaker diarization, has not been
fully explored yet. To address these problems, Fujita, Kanda,
Horiguchi, Nagamatsu, and Watanabe (2019), Fujita et al. (2019)
and Fujita, Watanabe, Horiguchi, Xue, and Nagamatsu (2020) pro-
posed an end-to-end diarization method by formulating speaker
diarization as a multi-label classification problem.

As shown in Fig. 16, given an acoustic feature sequence of
an audio recording Y = {yt ∈ Rd1 |t = 1, 2, . . . , T }, speaker
diarization estimates the speaker label sequence L = {l |t =
t
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Fig. 16. End-to-end neural diarization with the permutation-free loss for
two-speaker diarization.
Source: From Fujita, Watanabe, Horiguchi, Xue, and Nagamatsu (2020).

, 2, . . . , T }, where lt = {lt,j ∈ {0, 1}|j = 1, 2, . . . , J} denotes a
oint activity of a total number of J speakers at time t . This multi-
abel formulation can represent speaker overlap regions properly.
or example, lt,j = lt,j′ = 1 with j ̸= j′ represents that the speech
f the speakers j and j′ overlaps at time t . With the assump-
ion that each speaker is present independently, the frame-wise
osteriors are estimated by a neural network as follows (Fujita,
atanabe, Horiguchi, Xue, & Nagamatsu, 2020):

t = [P(lt,1|Y), P(lt,2|Y), . . . , P(lt,J |Y)] = NNt (Y) ∈ (0, 1)J (74)

here NNt (·) denotes a neural network, which was implemented
y a BLSTM (Fujita, Kanda, Horiguchi, Nagamatsu, & Watanabe,
019), or a self-attention based neural network (Fujita et al.,
019).
However, a difficult problem for the end-to-end speaker di-

rization is the speaker-label permutation ambiguity problem
hen aligning the ground truth label with the speech recording in
reparing the training data. For example, given an audio record-
ng with three speakers A, B and C. If the ground-truth label of
he recording is ‘‘AAABBC’’, then the encoded labels ‘‘111223’’ and
‘222113’’ are equally correct, making the neural network hard to
efine a unique training label sequence (Lin, Li, Yang, Wang, & Li,
020c). To cope with this problem, as shown in Fig. 16, a neural
etwork is trained to minimize the permutation-invariant train-
ng (PIT) loss between the output zt and the reference speaker
abel 1t ∈ {0, 1}J (Fujita, Kanda, Horiguchi, Nagamatsu, & Watan-
be, 2019; Fujita et al., 2019; Fujita, Watanabe, Horiguchi, Xue, &
agamatsu, 2020):

PF
=

1
TJ

min
φ∈perm(J)

∑
t

BCE(1φt , zt ) (75)

where perm(J) is the set of all possible permutations of the
speaker identifiers {1, 2 . . . , J}, and 1φt is the φth permutation of
the ground-truth label sequence, and BCE(·, ·) is the binary cross
entropy between the label and the network output.

Under the multi-label classification framework (74), the end-
to-end diarization system is unable to deal with the test scenario
where the number of speakers is larger than the maximum num-
ber of speakers in any of the training conversations. Here we
bravely call this problem the fixed speaker capacity issue for short.
To this end, the end-to-end diarization framework is less flexible
85
Fig. 17. Diagrams of the conventional end-to-end neural diarization (EEND)
method with fixed speaker numbers in Fujita, Watanabe, Horiguchi, Xue,
and Nagamatsu (2020), and the speaker-wise conditional end-to-end neural
diarization (SC-EEND) method.
Source: From Fujita et al. (2020).

than the stage-wise methods which can handle any number
of speakers in a test conversation (Horiguchi, Fujita, Watanabe,
Xue, & Nagamatsu, 2020). To enlarge the speaker capacity, the
number of the output nodes of the neural network (74) tends
to be set large. Unfortunately, the computational resource for
training with the PIT loss will be exponentially increased along
with the increase of the number of the output nodes. To deal
with this contradiction, Lin et al. (2020c) proposed an optimal
mapping loss, which directly computes the best match between
the output speaker sequence and the ground-truth speaker se-
quence through a so-called Hungarian algorithm. It reduces the
computational complexity to polynomial time, and meanwhile
yields similar performance as the PIT loss. It should be noted that,
the fixed speaker capacity issue remains unsolved in the optimal
mapping loss.

To address the fixed speaker capacity issue, Fujita et al. (2020)
proposed a speaker-wise conditional end-to-end (SC-EEND)
speaker diarization method. As shown in Fig. 17, it uses an
encoder–decoder architecture to decode each speaker’s speech
activity iteratively conditioned on the estimated historical speech
activities. Although the SC-EEND method achieves increased
speaker counting accuracy, it is difficult to handle more than
four speakers (Fujita et al., 2020), since it still has to deal with
the PIT problem during decoding. Besides, they also proposed
an encoder–decoder based attractor calculation method, where
a flexible number of speaker attractors are calculated from a
speech embedding sequence (Horiguchi et al., 2020). However,
the speaker capacity of the method remains limited, due to the
PIT loss which determines the assignment of the attractors to the
training speakers.

9.3. Online speaker diarization

Most state-of-the-art speaker diarization systems work in an
offline manner. Online speaker diarization, which outputs the
diarization result right after the audio segment arrives, is not an
easy task, since that future information is unavailable when an-
alyzing the current segment (Xue, Horiguchi, Fujita, Watanabe, &
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agamatsu, 2020). In history, a number of online speaker diariza-
ion and speaker tracking solutions have been reported (Dimitri-
dis & Fousek, 2017; Patino et al., 2018). Here we focus on the
eep learning based ones, which can be categorized to stage-wise
nline diarization and end-to-end online diarization methods.
In respect of the stage-wise online diarization, Zhang, Wang,

hu, Paisley, and Wang (2019) replaced the commonly used clus-
ering module with a trainable unbounded interleaved-state RNN
o make prediction in an online fashion, and it was further im-
roved by introducing a sample mean loss (Fini & Brutti, 2020). Ad-
itionally, a transformer-based discriminative neural clustering
odel proposed in Li, Kreyssig, Zhang, and Woodland (2019) can
lso perform online diarization. However, although it is possible
o transfer the online clustering to end-to-end speaker diariza-
ion, these methods still suffer from the assumption that only one
peaker is present in a single segment (Lin et al., 2020c; Xue et al.,
020).
In respect of the end-to-end online diarization, Xue et al.

2020) extended the self-attention-based end-to-end speaker di-
rization method in Fig. 16 to an online version, with a speaker-
racing mechanism that is important for the success of the online
iarization. Specifically, a straightforward online extension to the
ramework in Fig. 16 is to perform diarization independently
or each chunked recording. However, it is observed that the
xtension degrades the diarization error rate, due to the speaker
ermutation inconsistency across the chunk, especially for the
hort-duration chunks. To overcome this weakness, they applied
speaker-tracing buffer to record the speaker permutation in-

ormation determined in previous chunks for a correct speaker-
racing in the following chunk. Because this method is limited
o two-speaker diarization, more flexible speaker online end-
o-end diarization methods need to be further explored (Xue
t al., 2020). In addition, von Neumann et al. (2019) presented
n all-neural approach to simultaneously conduct speaker count-
ng, diarization, and source separation in a block-online manner,
here a speaker-tracing mechanism is also employed to avoid the
ermutation inconsistency problem across time chunks.

.4. Multimodal speaker diarization

Although speaker diarization is conventionally an audio-only
ask, the linguistic content carried by speech signals (Flemoto-
os, Georgiou, & Narayanan, 2020) and the speaker behaviors,
.g., the movement of lips, recorded by videos (Ding, Xu, Zhang,
ong, & Wang, 2020) offer valuable supplementary cues to the
etection of active speakers. To incorporate the aforementioned
nowledge, multimodal speaker diarization is emerging. Here we
ummarize some work as follows.
The first class is audio-linguistic speaker diarization, Park and

eorgiou (2018) integrated lexical cues and acoustic cues to-
ether by a gated recurrent unit-based sequence-to-sequence
odel, which improves the diarization performance by exploring

inguistic variability deeply. The effectiveness of using both the
inguistic and acoustic cues for diarization has been manifested
urther in structured scenarios (El Shafey, Soltau, & Shafran, 2019;
lemotomos et al., 2020) where the speakers are assumed to pro-
uce distinguishable linguistic patterns. For instance, a teacher is
ikely to speak in a more didactic style while a student tends to
e more inquisitive; a doctor is likely to inquire on symptoms
nd prescribe while a patient describe symptoms, etc. Another
merging direction is audio–visual speaker diarization. In Ding
t al. (2020), the authors proposed a self-supervised audio–video
ynchronization learning method for the scenario where there
acks massive labeled data. The authors in Chung, Lee, and Han
2019) proposed an iterative audio–visual approach which first
nrolls speaker models using audio–visual correspondence, and
 r

86
then combines the enrolled models together with the visual infor-
mation to determine the active speaker. In addition, microphone
arrays provide important spatial information as well. For exam-
ple, Kang, Roy, and Chow (2020) recently combined d-vectors
with the spatial information produced from beamforming for the
multimodal speaker diarization.

10. Robust speaker recognition

Along with the rapid progress of speaker recognition, the
frontier turns to ‘‘recognition in the wild’’ (McLaren et al., 2016;
Nagrani et al., 2017; Ryant et al., 2018), where lots of domain mis-
match and noisy problems arise. To overcome these difficulties,
many domain adaptation and noise reduction methods were pro-
posed. In this section, we comprehensively review these robust
speaker recognition methods, including domain adaptation in
Section 10.1, speech enhancement preprocessing in Section 10.2,
and data augmentation techniques in Section 10.3.

10.1. Domain adaptation

Over the past few years, speaker recognition has achieved
great success due to the application of deep learning and large
amount of labeled speech data. However, because collecting and
annotating data for every new application is extremely expen-
sive and time-consuming, sufficient training data may not be
always available. For example, although large-scale labeled En-
glish databases are publicly available, Cantonese databases may
be scarce (Sadjadi et al., 2017). Hence, it is needed to improve
the performance of low-resource speaker recognition by using
the large amount of auxiliary data. However, there are many
distribution mismatch or domain shift problems between the
low-resource data and auxiliary data, including different lan-
guages, phonemes, recording equipments, etc., which hinder the
effectiveness of the auxiliary data. Fortunately, the mismatch
problem can be alleviated by domain adaptation techniques.

Without loss of generality, the domain of interest is called the
target domain, and the domain with sufficient labeled training
data is called the source domain. The data distributions of the
target domain and source domain are denoted as pt (x, y) and
ps(x, y) respectively, where ps(x, y) ̸= pt (x, y). Domain adaptation
uses large amount of labeled data in the source domain to solve
the problems in the target domain. If the training data in the
target domain is manually labeled, then the domain adaptation is
supervised; otherwise, it is unsupervised. This paper focuses on
the unsupervised domain adaptation, since it is more common
and technically more challenging than the supervised domain
adaptation in speaker recognition.

Domain adaptation has long been a significant topic in speaker
recognition. It received much attention after the domain adap-
tation challenge in 2013.6 Over the past years, lots of super-
ised (Garcia-Romero & McCree, 2014; Wang, Okabe, Lee, &
oshinaka, 2020; Wang, Yamamoto, & Koshinaka, 2016) and
nsupervised (Alam, Bhattacharya, & Kenny, 2018; Bousquet &
ouvier, 2019; Garcia-Romero, McCree, Shum, Brummer, & Va-
uero, 2014; Glembek et al., 2014; Kanagasundaram, Dean, &
ridharan, 2015; Lee, Wang, & Koshinaka, 2019; Misra & Hansen,
018; Shum, Reynolds, Garcia-Romero, & McCree, 2014; Villalba
Lleida, 2014; Wang et al., 2020) shallow domain adaptation
ethods based on the well known i-vector/PLDA pipeline have
een developed. Among them, the adaptation is usually accom-
lished at the back-end, including the methods of compensating
he domain mismatch in the i-vector space by an independent

6 https://www.clsp.jhu.edu/workshops/13-workshop/speaker-and-language-
ecognition/

https://www.clsp.jhu.edu/workshops/13-workshop/speaker-and-language-recognition/
https://www.clsp.jhu.edu/workshops/13-workshop/speaker-and-language-recognition/
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ummary of adversarial-training-based domain adaptation methods.

Variable factors Instantiation References

1. Source and target mappings Ms
and Mt

Shared parameters Ms = Mt = M , or unshared
parameters Ms ̸= Mt .

Chen, Wang, Qian, and Yu (2020), Fang, Zou, Li, Sun,
and Ling (2019), Luu, Bell, and Renals (2020), Wang
et al. (2018), Xia, Huang, and Hansen (2019)

2. Domain discriminator loss
LadvD

Binary cross-entropy, multi-class cross-entropy,
or Wasserstein distance.

Rohdin et al. (2019), Wang et al. (2018), Zhou et al.
(2019)

3. Adversarial loss LadvM The gradient reversal layer, or the GAN loss
function.

Bhattacharya, Alam, and Kenny (2019), Bhattacharya,
Monteiro, Alam, and Kenny (2019), Luu et al. (2020),
Wang et al. (2018), Xia et al. (2019)

4. Input feature Xs and Xt Utterance-level speaker features (e.g. i-vector
and x-vector), or frame-level acoustic features
(e.g. MFCC and F-bank).

Bhattacharya, Alam, and Kenny (2019), Luu et al. (2020),
Tu, Mak, and Chien (2019), Wang et al. (2018)

5. Adaptation target Channel invariant, language invariant,
phoneme invariant, noise robust, or short
utterance compensation.

Bhattacharya, Alam, and Kenny (2019), Tawara, Ogawa,
Iwata, Delcroix, and Ogawa (2020), Wang et al. (2018),
Zhang, Inoue, and Shinoda (2018), Zhou et al. (2019)
T
m
d
p
M
Fig. 18. A unified framework of adversarial-training-based domain adaptation.

odule before LDA and PLDA (Alam et al., 2018; Aronowitz, 2014;
anagasundaram et al., 2015; Misra & Hansen, 2018), and con-
ucting domain adaptation at LDA (Glembek et al., 2014; McLaren
Van Leeuwen, 2011) or PLDA (Garcia-Romero & McCree, 2014;
arcia-Romero et al., 2014; Lee et al., 2019; Shum et al., 2014;
illalba & Lleida, 2014; Wang et al., 2020, 2016). Although the
ethods are quite effective, here we do not discuss their details,
s this article focuses on deep learning based ones.
Recently, many deep learning based domain adaptation meth-

ds were proposed. Following the categorization of the domain
daptation techniques (Tzeng, Hoffman, Saenko, & Darrell, 2017;
ang & Deng, 2018), this paper categorizes the deep-learning-
ased domain adaptation in speaker recognition into the follow-
ng three classes:

• Adversarial-training-based domain adaptation: It seeks
to minimize an approximate domain discrepancy distance
through an adversarial objective with a domain discrimina-
tor.

• Reconstruction-based domain adaptation: It assumes that
the data reconstruction of the source or target samples
can be helpful for improving the performance of domain
adaptation.

• Discrepancy-based domain adaptation: It aligns the sta-
tistical distribution shift between the source and target do-
mains using some mechanisms.

10.1.1. Adversarial-training-based domain adaptation
Before presenting the literature, we first build a unified frame-

ork of adversarial-training-based domain adaptation for speaker
ecognition by drawing lessons from Tzeng et al. (2017). As
hown in Fig. 18, the framework consists of:
87
• Xs and Ys drawn from ps(x, y) are the source features and
speaker labels, and Xt drawn from pt (x, y) are the target
features without labels;

• Ms and Mt are the feature mappings for the source and
target domains respectively;

• C is a classifier for discriminating speakers in the source
domain.

• D is a domain discriminator for discriminating the source
domain and target domain.

he adversarial adaptation methods aim at learning Ms and Mt for
inimizing the distance between the empirical source and target
ata distributions in the feature space, i.e. making p(Ms(Xs)) ≈

(Mt (Xt )). After the adaptation, the recognition models trained on
s(Xs) can be directly applied to the target domain.
In the training stage, Ms and C are jointly trained using the

standard supervised loss:

(M̂s, Ĉ) = argmin
Ms,C

Lcls(Xs, Ys;Ms, C)

= −E(xs,ys)∼(Xs,Ys)

J∑
j=1

I[j=ys] log[C(Ms(xs))]
(76)

where J is the number of speakers, and Lcls is either the standard
softmax or its variants described in Section 7, which ensures that
the outputs of Ms are speaker-discriminative. To minimize the
difference between the source and target representations, the
adversarial adaptation methods conduct the following two steps
alternatively for D and Mt :

D̂ = argmin
D

LadvD (Xs,Xt; M̂s, M̂t ,D) (77)

M̂t = argmin
Mt

LadvM (Xs,Xt; M̂s,Mt , D̂) (78)

where the symbols with hat, such as M̂s, denote that they are
fixed during the alternative optimization.

By alternatively minimizing (77) and (78), D and Mt play an
adversarial game: D is optimized to predict the domain labels of
Ms(Xs) and Mt (Xt ), while Mt is trained to make the prediction as
incorrect as possible. When the training process converges, we
have p(Ms(Xs)) ≈ p(Mt (Xt )) since that D is unable to discrimi-
nate Ms(Xs) and Mt (Xt ). In addition, because the output of Ms is
speaker-discriminative which is ensured by the speaker classifier
C , the output of Mt is supposed to be speaker-discriminative
too. For clarity, the manual label requirement in (76), (77), and
(78) is summarized in Table 11. Different implementations of the
framework in Fig. 18 are summarized in Table 10 which will be
reviewed in detail as follows.

One of the most popular domain-adversarial neural network
(DANN) architectures in literature is shown in Fig. 19 (Ganin &
Lempitsky, 2015). It consists of an encoder M , a speaker classifier
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F

Fig. 19. Domain-adversarial neural network (DANN) architecture with Ms = Mt = M .
Table 11
The manual label requirement in the loss functions (76), (77), and (78). The domain labels can be
any factors that are needed to be mitigated, including the types of channels, languages, phonemes,
noise, etc.
Losses Target domain speaker labels Source domain speaker labels Domain labels

Lcls ✓ ✗ ✗

LadvD ✗ ✗ ✓
LadvM ✗ ✗ ✓
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C , and a domain discriminator D. It follows the framework in
ig. 18 with a constraint Ms = Mt = M . Its training alternates

the following steps:

(1) The encoder is optimized by merging (76) and (78): M̂ =

argminM [Lcls(Xs, Ys;M, Ĉ) + λLadvM (Xs,Xt;M, D̂)], where λ
is a balance factor.

(2) The speaker classifier is obtained by minimizing (76): Ĉ =

argminC Lcls(Xs, Ys; M̂, C).
(3) The domain discriminator is obtained by minimizing (77):

D̂ = argminD LadvD (Xs,Xt; M̂,D).

After training, the encoder is responsible for extracting domain-
invariant and speaker-discriminative speaker features, while the
speaker classifier and domain discriminator will be discarded.

The domain-adversarial architecture has been used to ex-
plore channel-invariant (Chen et al., 2020; Fang et al., 2019;
Luu et al., 2020; Wang et al., 2018), language-invariant (Bhat-
tacharya, Alam, & Kenny, 2019; Bhattacharya, Monteiro, Alam,
& Kenny, 2019; Rohdin et al., 2019; Tu et al., 2019; Tu, Mak,
& Chien, 2020), phoneme-invariant (Tawara et al., 2020; Wang
et al., 2019), noise-robust (Meng, Zhao, Li, & Gong, 2019; Peri, Pal,
Jati, Somandepalli, & Narayanan, 2020; Zhou et al., 2019) speaker
features, etc. Here we present them briefly as follows.

Wang et al. (2018) applied DANN to learn a channel invari-
ant feature extractor from the i-vector subspace. It takes the
binary cross-entropy loss as the loss function of LadvD to train
the discriminator D. It adds a gradient reversal layer between the
encoder and the discriminator to realize a minimax game LadvM =

−LadvD . Luu et al. (2020) developed a similar framework with
Fig. 19 on an x-vector extractor. The framework produces speaker
features that are invariant to the granularity of the recording
channels. Instead of predicting the concrete domain labels, its
domain discriminator predicts whether a pair of speaker em-
beddings that comes from the same speaker belong to the same
recording in a Siamese fashion, see Fig. 20 for the above process.
There is also a gradient reversal layer between then x-vector
extractor and the domain discriminator. Chen et al. (2020) also
proposed a similar work to suppress the channel variability.

In addition to the channel mismatch problem, language mis-
match is another challenge in speaker recognition. In
Bhattacharya, Alam, and Kenny (2019), the authors applied the
domain-adversarial architecture directly to acoustic features for
88
a language invariant feature extractor, where the binary cross-
entropy loss and a gradient reversal layer are applied to (77) and
(78) respectively. In Bhattacharya, Monteiro, Alam, and Kenny
(2019), they further replaced the gradient reversal layer with a
generative adversarial network (GAN) loss, a.k.a. inverted-label
loss. Specifically, LadvD still adopts the binary cross-entropy loss,
while LadvM fools the domain discriminator by inverting the
domain labels instead of using a gradient reversal layer, i.e.:

LadvD (Xs,Xt; M̂,D) =

− Exs∼Xs [log(D(M̂(xs)))] − Ext∼Xt [log(1 − D(M̂(xt )))]
(79)

LadvM (Xs,Xt;M, D̂) =

− Exs∼Xs [log(1 − D̂(M(xs)))] − Ext∼Xt [log(D̂(M(xt )))]
(80)

here LadvD tags the data from the source domain as ‘‘1’’ and
he data from the target domain as ‘‘0’’, and LadvM takes the
pposite domain labels. This objective has the same fixed-point
roperties as the gradient reversal layer but provides stronger
radients to the encoder than the latter (Bhattacharya, Monteiro,
lam, & Kenny, 2019; Tzeng et al., 2017). The authors in Rohdin
t al. (2019) trained a language-invariant embedding extractor
n an end-to-end fashion, where the embedding extractor is a
tandard TDNN based x-vector extractor (Fig. 21). They utilized
he discriminator to estimate the empirical Wasserstein distance
etween the source and target samples, and optimized the feature
xtractor network to minimize the distance in an adversarial
anner. Tu et al. (2019) added an additional variational autoen-
oder (VAE) branch to the standard DANN structure of Fig. 19
or a language-invariant feature extractor as shown in Fig. 22,
here the state-of-the-art x-vector was used as the input. The
AE branch performs like a variational regularization which con-
trains the learned features to be Gaussian. As we know, Gaussian
istribution is essential for the effectiveness of the standard PLDA
ackend. In Tu et al. (2020), they further replaced the VAE with
n information-maximized VAE, which not only retains the vari-
tional regularization but also inclines to preserve more speaker
iscriminative information than the VAE.
For text-independent speaker recognition, phonetic informa-

ion is sometimes harmful, given the fact that it is difficult to
nsure shared phonetic coverage across short enrollment and test
tterances. However, for long recordings, phonetic information
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Fig. 20. Channel-invariant domain adaptation. The classifier is trained in the same way as the ordinary x-vector. The discriminator is trained on concatenated pairs
of within-speaker pairs. The blue arrows represent the forward propagation. The red arrows represent the backward propagation of gradients. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: From Luu et al. (2020).
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Fig. 21. End-to-end adversarial language adaptation.
Source: From Rohdin et al. (2019).

Fig. 22. Variational domain adversarial neural network.
Source: From Tu et al. (2019).

and even more higher level cues, such as word usages, actu-
ally differentiates speakers. Quest for such high-level speaker
features was an active area of research in about two decades
ago. Recently, some studies also investigated its effect on text-
independent speaker recognition in the era of deep learning.
For example, Wang et al. (2019) applied multi-task learning
on frame-level layers to enhance the phonetic information in
the frame-level features, and used the adversarial training on
segment-level layers to learn phoneme-independent representa-
tions. Finally, both operations result in improved performance.
89
Fig. 23. A brief diagram of unsupervised adversarial invariance.

Tawara et al. (2020) concluded that phonetic information should
be suppressed in text-independent speaker recognition working
with frame-wise or extremely short utterances.

Additive noise is one of the most serious interferences of
speaker recognition. To explore a noise-robust feature extractor,
many works resorted to DANN. For instance, Zhou et al. (2019)
used a multi-class cross entropy loss as the loss function of a
noise discriminator to train a noise-condition-invariant feature
extractor. Meng et al. (2019) applied the adversarial training
to learn a feature extractor that are invariant to two kinds of
conditions—different environments and different SNRs, where the
different environments are represented as a categorical variable
and the range of SNRs is formulated as a continuous variable.

Peri et al. (2020) applied an unsupervised adversarial invari-
ance (UAI) architecture to disentangle speaker-discriminative in-
formation. As shown in Fig. 23, the encoder generates two latent
representations h1 and h2 from the x-vector x, where h1 only
contains the speaker-discriminative information, and h2 contains
all other information of x. This was implemented by optimizing
the encoder, predictor and decoder together, where the predictor
aims to predict speaker labels ŷ from h1, and the decoder aims
o recover x̂ from a concatenation of h2 and a noise corrupted
ersion of h1, denoted as h′

1. In order to further encourage the
‘disentanglement’’, a minimax game between the disentanglers
nd the encoder was conducted, where the disentanglers try to
econstruct the two latent representations from each other, while
he encoder is optimized against the disentanglers. An important
erit of UAI over DANN is that the adversarial game does not
eed domain labels.
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Fig. 24. Adversarial discriminative domain adaptation (ADDA) approach. Note
that the source encoder is fixed during the adversarial adaptation stage.
Source: From Xia et al. (2019).

In addition to DANN where Ms = Mt = M , another kind of
dversarial-training-based domain adaptation methods train an
ncoder for each domain, i.e. Ms ̸= Mt . Adversarial discriminative
omain adaptation (ADDA) shown in Fig. 24 is such a representa-
ive approach (Tzeng et al., 2017). In Xia et al. (2019), the authors
pplied ADDA to learn an asymmetric mapping that adapts the
arget domain encoder to the source domain encoder, where the
wo domains are in different languages.

From the view of the framework in Fig. 18, ADDA is trained by
he following two successive steps:

(1) Pre-train a source domain encoder Ms and a speaker classifier
C with the labeled source data by (76).

(2) Fix the source domain encoder Ms, and perform adversarial
training on the target encoder Mt and domain discriminator D
by alternatively minimizing LadvD and LadvM via (77) and (78)
respectively. The domain discriminator D minimizes the bi-
nary cross-entropy loss, i.e. LadvD = −Exs∼Xs [log(D(M̂s(xs)))]−
Ext∼Xt [log(1 − D(M̂t (xt )))]. The target encoder Mt minimizes
an inverted label loss, i.e. LadvM = −Ext∼Xt [log(D̂(Mt (xt )))].7

In the test stage, the data from the target domain is first mapped
to the shared feature space by the target domain encoder, and
then classified by a back-end classifier trained in the source
domain, e.g. PLDA.

In order to compensate the unreliability of short
utterances, Zhang, Inoue, and Shinoda (2018) proposed to com-
pensate short utterances by long utterances using GAN. Specifi-
cally, it uses a generator to generate compensated i-vectors from
short-utterance i-vectors, and uses a discriminator to determine
whether an i-vector is generated by the generator or extracted
from a long utterance. Similarly, Liu and Zhou (2020) addressed
the problem by adversely learning a mapping function that maps
short embedding features to enhanced embedding features.

Despite of the success of the adversarial-training-based do-
main adaptation, its training is not easy in practice. For example,
DANN learns a common encoder for both domains, which may
make the optimization poorly conditioned, since a single en-
coder has to handle features from two separate domains (Tzeng
et al., 2017). Although ADDA is able to learn domain specific
encoders, its target domain has no labels. As a result, without
shared weights between the encoders, it may quickly fall into
a degenerate solution if not properly initialized (Tzeng et al.,
2017). To remedy this weakness, a pre-trained source encoder is
used to initialize the target encoder, leaving the source encoder
fixed during the adversarial training (Tzeng et al., 2017; Xia et al.,
2019). Besides, many training difficulties observed in related ar-
eas, such as image processing, have been encountered in speaker
recognition as well, though seldom discussed in depth.

7 Different from (80), the constant part −Exs∼Xs [log(1 − D̂(M̂s(xs)))] was
emoved from L , given that M is fixed.
advM s
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Fig. 25. The cycle GAN architecture.
Source: From Zhu et al. (2017).

10.1.2. Reconstruction-based domain adaptation
In the machine learning community, CycleGAN, which was

originally proposed for image-to-image translation (Zhu, Park,
Isola, & Efros, 2017), is one of the most common reconstruction-
based domain adaptation methods (Wang & Deng, 2018). Re-
cently, it was introduced to speaker recognition (Nidadavolu,
Kataria, Villalba, & Dehak, 2019; Nidadavolu, Kataria, Villalba,
García-Perera, & Dehak, 2020; Nidadavolu, Villalba, & Dehak,
2019). As shown in Fig. 25, CycleGAN comprises two generators
and two discriminators. The generator G transforms the feature
X in a domain to the feature Y in another domain, producing
an approximation of Y , i.e. Ŷ = G(X). The discriminator DY ,
which aligns with G, discriminates between Ŷ and Y . The other
generator–discriminator pair, i.e. F and DX , is intended to transfer
features from Y to X . The generators and discriminators are
trained using a cycle consistency loss and a combination of two
adversarial losses, where the cycle consistency loss measures how
well the original input is reconstructed after a sequence of two
generators, i.e. F (G(X)) ≈ X or G(F (Y )) ≈ Y . Because of the
adversarial and cycle reconstruction mechanisms of CycleGAN,
it has an outstanding advantage that its training needs neither
speaker labels nor paired data between the source and target
domains.

At the acoustic feature level, Nidadavolu, Villalba, and De-
hak (2019) explored a domain adaptation approach by learning
feature mappings between a microphone domain and a tele-
phone domain using CycleGAN. It maps the acoustic features
from the target domain (microphone) back to the source domain
(telephone), and conducts speaker recognition using the system
trained in the source domain. In Nidadavolu, Kataria, Villalba,
and Dehak (2019), they further investigated the effectiveness of
CycleGAN in low resource scenarios where the target domain
only has limited amount of data. They found that, the adaptation
system trained on limited amount of target domain data performs
slightly better than the adaptation system trained on a larger
amount of target domain data, when some noise was added to
the data. In Nidadavolu et al. (2020), they developed a CycleGAN-
based feature enhancement approach in the log-filter bank space
to improve the performance of speaker verification in noisy and
reverberant environments.

Besides CycleGAN, the encoder–decoder structure is another
popular reconstruction-based domain adaptation method in ma-
chine learning (Wang & Deng, 2018). As for speaker recogni-
tion, Shon, Mun, Kim, and Ko (2017) combined an autoencoder
with a denoising autoencoder to adapt resource-rich source do-
main data to the target domain.

10.1.3. Discrepancy-based domain adaptation
Discrepancy-based domain adaptation aligns the statistical

distribution shift between the source and target domains by
using some statistic criteria, including maximum mean discrep-
ancy (MMD), correlation alignment (CORAL), Kullback–Leibler
divergence, etc. For speaker verification, those criteria have been
widely studied in shallow domain adaptation models (Alam et al.,
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018; Lee et al., 2019). Recently, some of them were also intro-
uced to the deep learning based adaptation approaches. Specif-
cally, Lin, Mak, Li, and Chien (2018) added a MMD based loss
o the reconstruction loss of an autoencoder to train a domain-
nvariant encoder for multi-source adaptation of i-vectors. In Lin,
ak, and Chien (2018) and Lin, Mak, Tu, and Chien (2019),

hey further proposed a nuisance-attribute autoencoder based on
MD. In Lin, Mak, Li, Su, and Yu (2020), they proposed a multi-

evel deep neural network adaptation method using MMD and
onsistency regularization.

0.2. Speech enhancement and de-reverberation preprocessing

Speech is always distorted by noise and reverberation in
eal-world scenarios. A natural choice of coping with these dis-
ortions for speaker recognition is to add a speech enhance-
ent or de-reverberation preprocessing module. Recently, deep

earning based speech enhancement and de-reverberation tech-
iques (Wang & Chen, 2018) have been applied to speaker recog-
ition, which can be roughly divided into three categories,
.e. masking-based (Chang & Wang, 2017; Kolbœk, Tan, & Jensen,
016; Shon, Tang, & Glass, 2019; Zhao, Li, & Zhang, 2019; Zhao,
ang, & Wang, 2014), mapping-based (Novotnỳ, Plchot, Glem-
ek, Burget, et al., 2019; Novotny, Plchot, Matejka, & Glembek,
018; Oo et al., 2016; Plchot, Burget, Aronowitz, & Matejka,
016; Sun et al., 2018), and GAN-based (Michelsanti & Tan, 2017)
echniques. It should be noted that this section only reviews some
eneral concepts and provides useful cues without considering
he details of the speech enhancement techniques, since it is out
f the scope of this paper. More details can be found in speech
nhancement related papers (Wang & Chen, 2018).
Masking-based speech enhancement has received a lot of at-

ention and shown impressive performance in speech quality and
peech intelligibility. It uses a DNN to estimate a time–frequency
ask of noisy speech, and then uses the mask to recover the
orresponding clean speech. In Chang and Wang (2017), Kolbœk
t al. (2016) and Zhao et al. (2014), the authors applied masking-
ased speech enhancement techniques as an independently noise
eduction module for speaker recognition. In Zhao et al. (2019),
he authors jointly optimized speech separation and speaker ver-
fication networks together. Besides, Shon et al. (2019) designed
VoiceID loss which jointly optimize a pre-trained speaker em-
edding system and a speech enhancement network where the
peaker embedding system is fixed during the joint optimization,
s shown in Fig. 26.
DNN-based autoencoder, which maps noisy speech directly

o its clean counterpart, is another speech enhancement method
or speaker recognition. Plchot et al. (2016) trained an autoen-
oder to map the log magnitude spectrum of noisy speech to its
lean counterpart by minimizing the mean squared error, which
emonstrated its effectiveness on the text-dependent GMM-MAP
nd text-independent i-vector systems. The authors of Novotny
t al. (2018) explored a similar noise reduction method with Pl-
hot et al. (2016), and applied it to an x-vector system (Novotnỳ
t al., 2019). In Oo et al. (2016), the authors enhanced both the
mplitude feature and the phase feature, where they used MFCC
s the amplitude feature, and modified group delay cepstral co-
fficients as the phase feature. They concluded that simultaneous
nhancing of the amplitude and phase features is more effective
han enhancing their individual components alone. Apart from
he simplest feedforward DNN, more complicated LSTM based
peech enhancement methods were also explored (Sun et al.,
018).
Besides the masking and mapping based speech enhancement,

AN-based speech enhancement methods for speaker recognition
ere also developed. In specific, Michelsanti and Tan (2017) used
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conditional GANs to learn a mapping from a noisy spectrum
to its enhanced counterpart. The conditional GAN consists of a
generator and a discriminator which are trained in an adver-
sarial manner. The generator enhances the noisy spectrum; the
discriminator aims to distinguish the enhanced spectrum from
their clean counterpart using the noisy spectrum as a condition.
In addition, Yu, Tan, Ma, and Guo (2017) proposed a noise ro-
bust bottleneck feature extraction method based on adversarial
training.

In addition to the above speech enhancement methods for
speaker recognition, speech de-reverberation has also been stud-
ied in speaker recognition (Guzewich & Zahorian, 2017; Mošner,
Matějka, Novotnỳ, & Černockỳ, 2018; sner, rich Plchot, Matějka,
rej Novotný, & Černocký, 2018). Recently, far-field and multi-
channel speaker recognition also attracted much attention (Cai,
Qin, & Li, 2019; Qin, Cai, & Li, 2019; Taherian, Wang, Chang, &
Wang, 2020; Taherian, Wang, & Wang, 2019).

10.3. Data augmentation for robust speaker recognition

Large-scale multi-condition training is an effective way to
improve the generalization of speaker recognition in noisy envi-
ronments. Particularly, we have observed that the performance
of deep speaker embedding systems appears to be highly de-
pendent on the amount of training data. One way to prepare
large-scale noisy training data is data augmentation. In Snyder
et al. (2018), the authors employed additive noises and reverber-
ation to the original training data for the data augmentation of
x-vectors, which has shown to be very effective. Zhu, Ko, and Mak
(2019) applied a mixup learning strategy to improve the gener-
alization of x-vector extractors. To improve the performance of
speaker verification for children with limited data, Shahnawazud-
din, Ahmad, Adiga, and Kumar (2020) made speed and pitch
perturbation as well as voice conversion to increase the amount
of training data. Besides, Wang et al. (2020) validated the effec-
tiveness of spectral augmentation, which was originally proposed
for speech recognition, for deep speaker embeddings.

10.4. Other robust methods

Apart from the aforementioned methods, some other robust
speaker recognition methods are as follows. For example, Kataria
et al. (2020) optimized a deep feature loss for feature-domain en-
hancement of x-vector extractors. Cai, Cai, and Li (2020) designed
a new loss function for noise-robust speaker recognition. Kim
et al. (2019) proposed an orthogonal vector pooling strategy to re-
move unwanted factors. There are also many robust back-ends for
speaker verification (Bhattacharya, Alam, Kenn, & Gupta, 2016;
Ghahabi & Hernando, 2017; Guo et al., 2018; Mahto, Yamamoto,
& Koshinaka, 2017; Yang, Heo, Yoon, & Yu, 2017).

11. Datasets

In this section, we make an overview to existing challenges,
and datasets for speaker recognition.

Table 12 summarizes the brief information of most common
and some recently developed datasets. The recording methods of
the databases are briefly introduced as follows.

• NIST SRE: The National Institute of Standards and Technol-
ogy (NIST) of America has successfully conducted 15 Speaker
Recognition Evaluations (SREs) in the past 20 years. It is
the largest and most popular challenge in speaker recogni-
tion. More information can be found in Gonzalez-Rodriguez
(2014) and Greenberg et al. (2020).
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Fig. 26. Flow chart of the VoiceID loss.
Source: From Shon et al. (2019).
able 12
opular databases and challenges for speaker recognition. The term ‘‘wild’’ denotes that the audio is acquired across unconstrained conditions. The term ‘‘quite’’
enotes that the data were recorded indoor under a typical office environment. The term ‘‘SV’’, ‘‘SI’’ and ‘‘SR’’ are the abbreviations of ‘‘speaker verification’’, ‘‘speaker
dentification’’ and ‘‘speaker recognition’’ respectively.
Dataset Year Condition Language Sample rate Application Speakers Data amount Annotation

method

NIST SRE (Greenberg,
Mason, Sadjadi, &
Reynolds, 2020)

1996 ∼

2020
Clean, noisy Multilingual – Text-independent

SR
– – Hand annotated

VoxCeleb1 (Nagrani
et al., 2017)

2017 Multi-media (wild) Mostly English 16 kHZ Text-independent
SV and SI

1251 (690
males)

153,516
utterances,
352 hours

Automated
pipeline

VoxCeleb2 (Chung
et al., 2018)

2018 Multi-media (wild) Multilingual
Mostly English

– Text-independent
SV and SI

6112 (3761
males)

1,128,246
utterances,
2442 hours

Automated
pipeline

SITW (McLaren et al.,
2016)

2016 Multi-media (wild) – 16 kHZ Text-independent
single and
multi-speaker SV

299 (203
males)

2800
utterances

Hand annotated

RSR2015 (Larcher,
Lee, Ma, & Li, 2014)

2015 Smart-phones and
tablets (quite)

English 16 kHZ Text-dependent SV 300 (157
males)

196,844 files,
151 hours

Hand annotated

RedDots (Lee et al.,
2015)

2015 Mobile devices
(through internet)

English – Fixed phrase, free
speech and
text-prompted SV

45 – Manual, automatic,
or semi-automatic

VOICES (Nandwana
et al., 2019; Richey
et al., 2018)

2018 Far-field
microphones (noisy
room)

English 48 kHZ Text-independent
SV and SI

300 374,688 files,
1440 hours

Hand annotated

Librispeech (Panay-
otov, Chen, Povey, &
Khudanpur, 2015)

2015 – English 16 kHz ASR and SR Over 9000 1000 hours Manually
annotated

CN-CELEB (Fan et al.,
2020)

2019 Multi-media (wild) Chinese – Text-independent
SV

1000 130,109
utterances,
274 hours

Automated
pipeline with
human check

BookTube-
Speech (Pham, Li, &
Whitehill, 2020)

2020 Multi-media – – Text-independent
SV

8450 – Automatic pipeline

Hi-MIA (Qin, Bu, & Li,
2020)

2020 Microphone arrays
(rooms, far-field)

Chinese, English 16 kHZ,
44.1 kHz

Text-dependent SV 340 (175
male)

More than
3,936,003
utterance,
1561 hours

Hand annotated

FFSVC 2020 (Qin
et al., 2020)

2020 Close-talk cellphone,
far-field microphone
arrays (far-field)

Mandarin 16 kHZ,
48 kHZ

Text-dependent and
text-independent SV

– – Hand annotated

DIHARD1 (Ryant
et al., 2018)

2018 Single channel
(wild)

English (most),
Mandarin

16 kHZ Speaker diarization – 40 hours Hand annotated

DIHARD2 (Ryant
et al., 2019)

2019 Single channel and
multichannel (wild)

English (most),
Mandarin

16 kHZ Speaker diarization – 503 files,
339.95 hours

Hand annotated

AMI (Carletta et al.,
2005)

2005 Multi-modal English – Speaker diarization – 100 hours Hand annotated
• VoxCeleb1,2: The VoxCeleb dataset was collected by a fully
automated pipeline based on computer vision techniques
from open-source media. The pipeline obtains videos from
YouTube, performs active speaker verification using a two-
stream synchronization CNN, and confirms the identity of
the speaker using CNN based facial recognition (Chung et al.,
2018; Nagrani et al., 2017).

• SITW: The speakers in the wild (SITW) database contains
hand-annotated speech samples from open-source media
92
for the purpose of benchmarking text-independent speaker
recognition technology on single and multi-speaker audio
acquired across unconstrained conditions (McLaren et al.,
2016).

• RSR2015: The RSR2015 database were recorded indoor un-
der a typical office environment with six mobile devices
(five smart-phones and one tablet) (Larcher et al., 2014).

• RedDots: The RedDots project used a mobile app as the
recording front-end. Speakers recorded their voices offline
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and later on uploaded the recordings to an Apache web
server when Internet connection was available (Lee et al.,
2015).

• VOICES: The voices obscured in complex environmental
settings (VOICES) corpus were recorded in furnished rooms
with background noise played in conjunction with fore-
ground speech selected from the LibriSpeech corpus. The
displayed noises include television, music, or overlapping
speech frommultiple speakers (referred to as babble) (Nand-
wana et al., 2019; Richey et al., 2018).

• LibriSpeech: While intended created for speech recognition
rather than verification or diarization, LibriSpeech does in-
clude labels of speaker identities and is thus useful for
speaker recognition (Panayotov et al., 2015; Pham et al.,
2020).

• CN-CELEB: CN-CELEB was collected following a two-stage
strategy: firstly the authors used an automated pipeline to
extract potential segments of the Person of Interest from
‘‘bilibili.com’’, and then they applied a human check to re-
move incorrect segments (Fan et al., 2020).

• BookTubeSpeech: The BookTubeSpeech was collected by
an automatic pipeline from BookTube videos (Pham et al.,
2020).

• Hi-MIA: Hi-MIA database was designed for far-field sce-
narios. Recordings were captured by multiple microphone
arrays located in different directions and distance to the
speaker and a high-fidelity close-talking microphone (Qin
et al., 2020).

• FFSVC 2020: The far-field speaker verification challenge
2020 (FFSVC20) is designed to boost the speaker verification
research with special focus on far-field distributed micro-
phone arrays under noisy conditions in real scenarios (Qin
et al., 2020, 2020).

• DIHARD1,2: The DIHARD challenge intended to improve the
robustness of diarization systems to variation in record-
ing equipment, noise conditions, and conversational do-
main (Ryant et al., 2018, 2019).

• AMI: The AMI meeting corpus is a multi-modal dataset con-
sisting of 100 h of meeting recordings, and it was recorded
using a wide range of devices including close-talking and
far-field microphones, individual and room-view video cam-
eras, projection, a whiteboard, and individual pens, all of
which produce output signals that are synchronized with
each other (Carletta et al., 2005).

2. Conclusions and discussions

This paper has provided a comprehensive overview of the
eep learning based speaker recognition. We have analyzed the
elationship between different subtasks, including speaker ver-
fication, identification, and diarization, and summarized some
ommon difficulties. Based on the analysis, we summarized the
ubtasks from three widely studied core issues—speaker feature
xtraction, speaker diarization, and robust speaker recognition.
or speaker feature extraction, we reviewed two kinds of hybrid
tructures, which are DNN-UBM/i-vector and DNN-BNF/i-vector.
n addition, the overview of the state-of-the-art deep speaker
mbedding was made in respect of four key components, which
re the inputs, network structures, temporal pooling strategies,
nd loss functions respectively. Particularly, we reviewed the loss
unctions of the end-to-end speaker verification for feature learn-
ng from the perspective of different training sample construction
ethods. For speaker diarization, we reviewed stage-wise di-
rization, supervised end-to-end diarization, online diarization,
nd multimodal diarization. For robust speaker recognition, we
93
surveyed three kinds of deep learning based domain adapta-
tion methods as well as several speech preprocessing methods,
which deal with the domain mismatch and back-ground noise
respectively. Some popular and recently developed datasets were
summarized as well. To conclude, deep learning has boosted the
performance of speaker recognition to a new high level. We
make our best to summarize the recent rapid progress of the
deep learning based speaker recognition, hopefully this provides a
knowledge resource and further blooms the research community.

Although the deep learning based speaker recognition has
achieved a great success, many issues remain to be addressed.
Here we list some open problems from the perspectives of net-
work training, loss functions, real-world diarization, and domain
adaptation respectively. For the network training, most speaker
feature extraction methods need handcraft acoustic features as
the input, which may not be optimal. The state-of-the-art deep
models have a large number of parameters, which are difficult to
be applied to portable devices. The network training also needs
large amounts of labeled training data and heavy computation
resources. For the loss functions, although so many loss functions
have been proposed, there is lack of strong theoretical base for the
success of the loss functions, nor theoretical guidance that could
lead to better loss functions. Although the verification losses for
the end-to-end speaker verification meet the verification process
tightly, their potentials have not been fully developed yet. For the
real-world diarization, from the recent DIHARD challenges, one
can see that speaker diarization is still a hard problem. In a real-
world conversation, a speech recording may be contaminated
by serious speech overlap and strong background noise. Some
technically difficult problems, such as the unknown number of
speakers and rapid speaker changes, also hinder the performance
of speaker diarization in real-world applications severely. Finally,
although many domain adaptation algorithms have been pro-
posed, especially those based on adversarial learning, they have
not made landmark progress compared to traditional shallow
adaptation methods, e.g. the PLDA based adaptation, which needs
further efforts.
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