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End-to-End Speaker Verification via Curriculum
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Abstract—End-to-end speaker verification achieves the verifica-
tion through estimating directly the similarity score between a pair
of utterances, which is formulated as a binary (i.e., target versus
non-target) classification problem. Unlike the stage-wise method,
an end-to-end verification approach optimizes the evaluation met-
rics directly and its output layer is parameter-free, which can save
great computing and memory resources. However, it faces two
important difficulties. The first one is how to deal with severely im-
balanced trials, i.e., the number of target trials is much smaller than
that of nontarget trials, and the other is about how to handle easy
trials that do not help improve the model in training. To circumvent
these two issues, we propose in this paper a binary cross-entropy
(BCE) type of loss function and present a method to train the
deep neural network (DNN) models based on the proposed loss
function for end-to-end speaker verification. The training process
employs a bipartite ranking method to deal with the trial imbalance
problem and a curriculum learning method to help improve both
the training stability and performance of the model by selecting
non-target trials from easy to hard ones gradually along the conver-
gence process. Since the training process employs bipartite ranking
and curriculum learning and the loss function is of the generalized
BCE form, we name the new approach curriculum bipartite rank-
ing weighted binary cross-entropy (CBRW-BCE). Experimental
results show that the model trained with CBRW-BCE not only
achieves the state-of-the-art performance but is also well calibrated.

Index Terms—End-to-end, metric learning, bipartite ranking,
curriculum learning, calibration.

I. INTRODUCTION

S PEAKER verification aims to verify whether a given ut-
terance is pronounced by a hypothesized speaker based

on some utterances pre-recorded from that speaker [1], [2].
State-of-the-art speaker verification systems can be broadly
categorized into two classes: stage-wise and end-to-end ones.
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A stage-wise system consists of a front-end speaker feature
extractor and a back-end similarity score calculator. The former
extracts speaker features by projecting utterances of different
length into a fixed, low-dimensional feature space. The repre-
sentative extractors include the d-vector [3], the x-vector [4]
and many other deep embedding methods [5]–[11]. The latter
calculates similarity scores between the test and enrollment
embeddings, and decides whether the utterances in the trial are
from a same speaker by comparing the similarity score with
a predefined threshold. The representative scoring methods for
back-end include probabilistic linear discriminant analysis [12],
cosine similarity, metric leaning based ones [13], [14], and
others [15], [16]. The threshold can be either an empirical one
tuned from a development set or one calculated according to the
Bayes decision theory if the scores are calibrated [19], [20]. In
contrast, an end-to-end system takes a pair of utterances (called a
trial) as input and outputs the similarity score directly [17], [18].
Again, calibrated score is preferred from the decision making
perspective.

One major difference between the stage-wise and end-to-end
speaker verification lies in the loss function, as summarized in
Table I. The earliest loss function developed for the stage-wise
speaker verification is the so-called Softmax loss function,1

which attempts to maximize the classification accuracy for
speakers in the training data [3], [4]. It is known that within-
speaker variances play an important role on the generalization
ability of speaker verification systems. Generally, the smaller the
within-speaker variances, the better is the generalization ability.
However, Softmax does not explicitly consider to reduce the
within-speaker variances. To deal with this issue, several variants
of Softmax, e.g., the ASoftmax [21]–[23], the AMSoftmax [24],
and the ArcSoftmax [25], were developed. These variants in-
troduce a margin to explicitly constrain the embedding space
to have small within-speaker variances, thereby improving the
generalization ability of the verification system. Besides, they
are optimized to match the cosine similarity scoring back-end
directly, and are therefore more suited to many cosine-similarity-
based verification systems than their original counterpart. What
in common with the aforementioned loss functions is that they
all require a parametric classification layer (so, we call them the
classification-based loss functions). In practice, the number of
parameters of this layer increases dramatically with the increase
of the number of training speakers, which can be problematic to
the network training if the number of speakers is extremely large.
To mitigate this issue, methods such as low-rank approximation

1This paper defines the Softmax loss function as a combination of the last
fully connected layer, the Softmax function, and the cross-entropy.
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TABLE I
COMPARISON OF THE LOSS FUNCTIONS FOR SPEAKER VERIFICATION WHERE “CLASSIFICATION” AND “METRIC” DENOTE, RESPECTIVELY, THE CLASSIFICATION-
AND METRIC-LEANING-BASED LOSS FUNCTIONS, AND “OPTIMIZING ON ALL SPEAKERS” MEANS THAT THE TRAINING IS CONDUCTED WITH RESPECT TO ALL

THE TRAINING SPEAKERS AT EACH TRAINING ITERATION

to the weight matrix of the classification layer [26] and compu-
tation acceleration for the Softmax function [27] are developed.

In contrast, the end-to-end speaker verification systems gen-
erally use metric-learning-based loss functions, which learn a
similarity function from the training utterances directly. As the
classification layer of this category of loss functions is nonpara-
metric, handling large number of speakers in training is not a
issue.

According to the number of utterances used to construct an
independent element, the metric-learning-based loss functions
can be classified into prototype based [28]–[30], quadruplet [31],
triplet [32], [33], and pairwise [17], [18], [34], [35] ones.
Among those, only the pairwise loss functions, e.g., the binary
cross-entropy (BCE), which work with binary labels, are able
to realize rigorous end-to-end training since the binary labels
based on pairs of training utterances do not need accurate speaker
identities. Furthermore, these loss functions can be generalized
to work with multi-speaker applications [36], [37] by simply
formulating the problem as one of multi-label classification [38].
Another property of the pairwise loss functions that has been
overlooked is that they have the potential of implementing
end-to-end calibration, which trains the model to directly output
well calibrated scores. From the aforementioned perspectives,
the pairwise loss functions should in principle be best suited to
end-to-end speaker verification. However, in reality, pairwise
loss functions are often founded inferior to others in terms
of performance. The underlying reasons are multiple, which
motivate us to investigate, thereby unlocking the full potential
of the pairwise loss functions.

To properly train a deep neural network (DNN) with pairwise
loss functions, some challenging issues have to be carefully
handled. The first one is about the severely imbalanced posi-
tive and negative trials. Generally, positive trials are far fewer
than negative trials in the training data regardless of whether
the training trials are constructed from well labeled corpora
or collected from real applications. To circumvent this issue,
under-sampling of the negative trials or over-sampling of the
positive trials is usually adopted. But the over-sampling strategy
may easily lead to model overfitting and/or introduces additional
noise while the down-sampling strategy may lose informative
data. The second issue is that there are generally many easy-
to-classify negative training trials in the training data, which
are non-informative and may result in an inferior DNN model
after training. Therefore, it is important to select informative

negative trials, which is a process known as “hard negative
mining”. A common approach to this is to apply a fixed mining
strategy during the entire training process, which attempts to
remove those easy to classify negative trials while selecting
the hard negative trials as they may contribute significantly the
performance improvement. However, this fixed mining strategy
is in general not optimal. On the one hand, at the beginning
of the training process in which the model classifies training
trials arbitrarily, using only hard negative trials may cause the
training converge to some local minima [40] and the resulting
model is biased toward discriminating the hard negative trials
while failing to classify many easy negative trials that have not
yet been correctly classified. Even worse, if the selected trials are
too difficult, the optimization process may become unstable [31]
and even divergent [29]. On the other hand, at the late stage of
the training in which most negative trials are correctly classi-
fied, using too many well classified negative trials will make
the model neglect missclassified hard negative trials, which
should contribute significantly to the performance improvement.
The third issue is about score calibration, a process to convert
similarity scores into proper log-likelihood ratios (LLRs) [39],
which are important for making hard decisions and providing
a probabilistic meaning for such applications as forensic [54].
The model trained with end-to-end loss function is expected
to output calibrated scores directly, while this has never been
studied before [39].

To deal with the aforementioned issues, we propose in this
work a pairwise loss function, which is named as curriculum
bipartite ranking weighted BCE (CBRW-BCE), and present an
approach based on the new loss function to training speaker
verification models with good discriminative and calibration per-
formance. The major contributions of this paper are as follows.
� A pairwise loss function, i.e., CBRW-BCE, is proposed,

which jointly considers the discriminant and calibration
performance. It is a weighted binary cross-entropy type of
loss function, which enables the trained model to be both
discriminative and well calibrated. This method of score
calibration has never been investigated in the end-to-end
training.

� A bipartite ranking method is applied in the training process
to circumventing the issue of imbalanced trials. With the
use of bipartite ranking [41], this method learns a ranking
function, which assigns a similarity score to every trial in
such a way that the positive trials have higher scores than
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Fig. 1. Workflows of the training and test stages of an end-to-end speaker
verification system. In the test stage, an enrollment utterance u1 and a test
utterance u2 are first fed into a DNN (parameterized by θ), which produces
two embeddings x1 and x2. Then, a similarity score s between x1 and x2 is
computed by a scoring function (parameterized byw, b). Finally, a hard decision
on whether the two inputs are from the same speaker are made by comparing
s with a threshold ξ. In the training stage, a manually constructed pairwise
training set {(u1

n, u
2
n)}Nn=1 is first fed forward into the model, which calculates

a training loss L(ln, sn), where ln denotes the ground truth similarity of the
input utterances. Then, the loss is minimized by back-propagation (as shown by
the downward red arrows), which updates the model parameters iteratively (as
shown by the blue left arrows) where the subscript (·)t denotes the tth training
iteration.

the negative trials. To train such a ranking function, every
positive trial is compared to all the negative trials, thereby
avoiding the trial imbalance problem naturally.

� A curriculum learning method is proposed to help improve
both the training stability and performance of the model by
conducting dynamic hard negative mining. It dynamically
selects a number of negative trials according to the conver-
gence status of the model during training, which enables
the training process converge to a good state. To the best of
our knowledge, it is the first time that the convergence state
of the network is fed back into the mining of hard negative
samples.

The remainder of this paper is organized as follows. Section II
discusses the problem of end-to-end speaker verification. De-
tailed description of the proposed loss function is presented in
Section III. In Sections IV and V, we justify through experiments
the effectiveness of the developed method. Finally, important
conclusions are given in Section VI.

II. PRELIMINARIES

The test and training of a speaker verification model can be
formulated as follows. Without loss of generality, we assume
that u1 represents an enrollment utterance (note that there can be
multiple enrollment utterances from one speaker) andu2 denotes
a test utterance. As illustrated in Fig. 1(a), a DNN-based speaker
verification model f(·) is formulated as follows:

s = f(u1, u2; θ, w, b)
H0

≷
H1

ξ, (1)

where θ, w and b are learnable parameters, and ξ is a decision
threshold. The hypothesis H0 denotes that (u1, u2) are from a
same speaker while the hypothesis H1 denotes that (u1, u2) are
from different speakers. Let us denote (x1,x2) as the embedding
vectors of (u1, u2) learned by DNN.

End-to-end speaker verification systems are trained on an
iterative way. Let us denote by Tt the mini-batch of training

TABLE II
MAIN NOTATION USED IN THIS WORK

trials at the tth training iteration, i.e.,

Tt = {(x1
n,x

2
n, ln)|x1

n,x
2
n ∈ Rd, n = 1, 2, . . . , N}, (2)

where N denotes the total number of training trials in the mini-
batch, (x1

n,x
2
n) denotes the embedding vectors for the nth trial,

and ln ∈ {1, 0} is the ground truth label describing whether the
nth paired utterances are from a same speaker. It is evident that
every mini-batch may have different training trials. Suppose that
we evaluate the similarity between two utterances by the linearly
transformed cosine similarity:

sn = w × (x1
n)

Tx2
n

‖x1
n‖‖x2

n‖
+ b, (3)

where (·)T denotes the transpose operator, ‖ · ‖ denotes the �2
norm, and w and b are initialized to be 10 and −5 respectively.
Given (2) and (3), the training of a speaker verification model
can be formulated as the following metric learning problem:

θ∗, w∗, b∗ = arg min
θ,w,b

L(St; θ, w, b), (4)

where St = {(sn, ln)|n = 1, 2, . . . , N}, and L(·) is
a metric-learning-based loss function. See Table II
for the notation used in this paper.

In this work, we use the BCE loss function, which is defined
as:

LBCE = − 1

υl

N∑
n=1

lnlog [P (sn)]

− 1

N − υl

N∑
n=1

(1− ln)log [1− P (sn)] , (5)

where υl =
∑N

n=1
ln, andP (·) denotes the probabilistic output

of DNN. In this work, the sigmoid activation function is used in
the last layer, so we have P (sn) =

1
1+e−sn .

III. THE CBRW-BCE APPROACH

As discussed previously and also illustrated in Fig. 2, three
challenging issues have to be handled meticulously to train a
good end-to-end speaker verification model, i.e., imbalanced tri-
als, hard negative mining, and score calibration. In the following
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Fig. 2. Illustration of the three difficult problems in the training of an end-to-end speaker verification model. TRIALS CONSTRUCTION: the process of
constructing training trials from a batch of individual samples; TRIALS IMBALANCE: the number of the constructed negative trials is much larger than the
number of the constructed positive trials; HARD NEGATIVE MINING: the process of mining informative hard negative trials for training a stronger model;
SCORE CALIBRATION: the process of calibrating similarity scores into log likelihood ratios for facilitating the hard decisions under the Bayes decision theory.

subsections, we will present a method and discuss how to deal
with these issues.

A. Deep Metric Learning Based on the Bipartite Ranking

This subsection addresses the issue of how to deal with
severely imbalanced trials in training. For simplicity, the sim-
ilarity score set St in (4) is further divided into a negative
subset and a positive subset, i.e., Nt = {si|i = 1, 2, . . . , I} and
Pt = {sj |j = 1, 2, . . . , J} respectively, where I + J = N and
Nt ∪ Pt = St. Bipartite ranking attempts to learn a ranking
function by assigning higher scores to positive trials while lower
scores to negative trials for the binary classification problem in
(1), which can be formulated as minimization of the following
loss function:

L(Nt,Pt; θ, w, b)=
1

IJ

I∑
i=1

J∑
j=1

[
I(sj < si) +

1

2
I(si = sj)

]
,

(6)
where si ∈ Nt, sj ∈ Pt, and I(·) is an indicator function whose
value is 1 if the input statement is true and 0 otherwise. As shown
in [43], the right-hand side of (6) can be expressed as

L(Nt,Pt; θ, w, b) = 1− ̂AUC(Nt,Pt), (7)

where ̂AUC(·) is the so-called Wilcoxon-Mann-Whitney statis-
tic [44], which represents an empirical area under the ROC curve
(AUC) estimated over Nt and Pt. Therefore, minimizing (6) is
equivalent to maximizing the AUC but with a benefit of naturally
mitigating the problem of imbalanced trials.

Unfortunately, the integer optimization problem in (6) is
NP-hard. A common way to circumvent this NP-hard problem
is to relax the indicator function by a differentiable function,
e.g., I(z ≤ 0) ≤ max(0, 1− z). In this work, we use a hinge
function, i.e., max(0, δ − z), with a tunable hyperparameter δ
to relax (6), i.e.,

L(Nt,Pt; θ, w, b) =

1

IJ

I∑
i=1

J∑
j=1

[
max(0, δ − sj + si) +

1

2
max(0, δ)

]
.

(8)

The second term in the brackets on the right-hand side of (8) is
irrelevant to si and sj and hence neglecting it does not affect the
solution of optimization. So, from the optimization perspective,
the loss function in (8) is equivalent to the following one:

L(Nt,Pt; θ, w, b) =
1

IJ

I∑
i=1

J∑
j=1

max(0, δ − sj + si). (9)

It is easy to see from (9) that the loss function increases only if
δ − sj + si > 0. Let us define an index matrix Π ∈ {0, 1}I×J :

Π(i, j) =

{
1, if sj − δ < si
0, otherwise

. (10)

Then, (9) can be rewritten as

L(Nt,Pt; θ, w, b) =
1

IJ

I∑
i=1

J∑
j=1

Π(i, j) [si − (sj − δ)]

= −
J∑

j=1

ωj(sj − δ) +
I∑

i=1

ωisi, (11)

where δ is a parameter to constrain the model to have small
within-speaker variance, and ωj =

1
IJ

∑I
i=1 Π(i, j) and ωi =

1
IJ

∑J
j=1 Π(i, j), which encode the bipartite ranking informa-

tion of the training trials, are the weights for cost-sensitive
learning to mitigate the trial imbalance problem.

Note that in the training process, sj reflects the probability of
the correct prediction of positive trials. So, the larger the value
of sj , the more accurate is the prediction. In order to make the
training process emphasize on the positive trials that are not well
predicted and meanwhile neglecting those that are already well
classified, we expect the modulus of the gradient of the loss
function to be large if the value of sj is small, and vice versa.
The modulus is expected to approach zero if the value of sj is
too large. Note that this should be opposite for negative trials.

To achieve this goal, we further relax (11) to the following:⎧⎨⎩−(sj − δ) ≤ −log
(

1

1+e−(sj−δ)

)
si ≤ −log

(
1

1+esi

)
= −log

(
1− 1

1+e−si

)
.

(12)

Fig. 3 illustrates the relaxation in (12). As seen, the relaxation
meets our expectation. There is another reason that we make the

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on August 28,2022 at 15:18:50 UTC from IEEE Xplore.  Restrictions apply. 



1334 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 3. Illustration of (12) with δ = 2. The first and third subfigures illustrate, respectively, the first and second inequalities in (12), and the second and fourth
subfigures illustrate, respectively, the gradients of the two inequalities. The modulus of the gradient is expected to be small in the shaded regions.

Algorithm 1: The Sample Selection Function.
Input: The similarity scores of negative training trials,
i.e., Nt; hyperparameters αt, βt ∈ [0, 1] with αt < βt;

Output:Selected hard negative trials N̂t.
1: Replace αt and βt with α̂t = �I × αt�+ 1,

β̂t = 	I × βt
, where the values of α̂t and β̂t satisfies
1 ≤ α̂t ≤ β̂t ≤ I with I being the size of Nt;

2: Rank all scores in Nt in descending order, so that
sk1

> sk2
> · · · > skI

, where the subscripts {ki}Ii=1

are unduplicated integral numbers between 1 and I;
3: Select scores lying between the α̂tth and β̂tth

positions, thereby forming
N̂t = {skα̂t

, skα̂t+1
, . . . , skβ̂t−1

, skβ̂t
};

Result: N̂t

relaxation by the sigmoid function, i.e., it enables us to derive a
loss function that can jointly maximize the discriminability and
calibration performance of the model, which will be discussed
later in Section III-C. Substituting (12) into (11) gives the
bipartite ranking weighted BCE (BRW-BCE) loss function:

LBRW-BCE(Nt,Pt; θ, w, b) = −
J∑

j=1

ωj log

(
1

1 + e−(sj−δ)

)

−
I∑

i=1

ωilog

(
1− 1

1 + e−si

)
.

(13)

B. Hard Negative Mining Based on Curriculum Learning

Many elements in Nt are computed from easy negative trials,
which do no provide useful information for training a good
model once they are classified correctly. As a result, it is impor-
tant to neglect those elements during training. This subsection
presents the principle of the proposed hard negative mining
method based on curriculum learning.

Basically, the method feeds all negative trials into the loss
function at the beginning of the training process, and then
gradually neglects more and more easy negative trials along the
training progress. This strategy will not only help overcome
the training instability issue caused by hard negative trials at the
early training stage, but also help improve the performance of
the final model using the hard negative trials at the late training
stage. The detailed process of this strategy is as follows.

Fig. 4. Illustration of the curriculum hard negative mining from the perspective
of partial AUC optimization.

First, a sample selection function (SSF) based on the similarity
scores is applied (the process is shown in Algorithm 1), where
two hyperparameters αt and βt are used to control the degree
of difficulty in classification of the selected samples. The cur-
riculum hard negative mining is conducted by first initializing
αt and βt as:

α0 = 0, β0 = 1. (14)

Then, with the value of αt being fixed, we adaptively shrink βt

for every Δ iterations according to

βt=

{
min(βt−1, 1− PΔ), if t∈{Δ, 2Δ, 3Δ, · · · }
βt−1, otherwise

, (15)

where

PΔ =
1

Δ

t−1∑
m=t−Δ

̂AUC(Nm,Pm). (16)

denotes the average of the empirical AUC values from the
(t−Δ)th to the (t− 1)th iterations. Because the value of
̂AUC(Nm,Pm) fluctuates during training, the minimization
operator is used to ensure that the value of βt decreases mono-
tonically. Note that if too difficult negative trials are selected
with Algorithm 1 in the early stage of training, e.g., setting
βt to a small value such as 0.1, the training process may not
converge. Therefore, quick shrinkage of the value of βt should
be avoided in the early stage of training. For this, we introduce
a hyperparameter, i.e., Δ, to control the descent speed of βt,
where Δ ≥ 1.

Finally, the CBRW-BCE loss function is computed as{
N̂t = SSF(αt, βt; θ, w, b),

LCBRW-BCE = LBRW-BCE(N̂t,Pt; θ, w, b).
(17)

According to (7) and (15), LCBRW-BCE essentially maximizes
the partial AUC as the value of βt gradually decreases, which is
illustrated in Fig. 4.
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As seen in Algorithm 1, the algorithm consists of three steps.
So, the complexity of the algorithm can be estimated accord-
ingly. Specifically, the first step needs only one addition and
two multiplications while the third step only needs to move
(β̂t − α̂t + 1) numbers. The complexity of the second step
depends on the sorting function. If, for example, the Bubble
Sort algorithm is used, the time and space complexities are,
respectively, O(I2) and O(1). In practice, the best performance
of CBRW-BCE can be reached with a not large batch size. So,
the complexity of the algorithm is not high.

C. Score Calibration

The discriminability and calibration of a speaker verification
model are not closely related. The discriminability refers to the
problem of learning the ranking of the similarity scores while
the calibration refers to the ability of converting the absolute
similarity scores to LLRs without changing their ranking order.
Therefore, a loss function that is good for discrimination does
not necessarily lead to good calibration and vice versa.

As shown in Fig. 1(b), an end-to-end calibration method
trains a speaker verification model with a calibration sensitive
loss function so that the model would directly output calibrated
scores. Such a loss function should be able to optimize both the
discrimination and calibration performance jointly. In practice,
the logistic regression is a common choice for calibration [19],
and it was usually implemented as an independent module from
the deep learning based speaker verification model. Because the
logistic regression is optimized with the BCE loss function, it
should in principle be able to realize the end-to-end calibration.
However, as described in Section I, BCE cannot achieve the
best discriminability. In comparison, CBRW-BCE, which is a
generalized form of BCE, is able to optimize both the discrim-
inability and calibration performance jointly, which can be seen
from (13).

The hyperparameter δ and the ranking between positive and
negative trials in (10) are originally used for improving the
discriminability of the model, which are not optimal for cali-
bration. To achieve both good discriminability and calibration,
CBRW-BCE first guides DNN to achieve good discriminant
performance while leaving the scores weakly calibrated. Once
the DNN training converges in terms of some evaluation metrics,
e.g., EER or pAUC, CBRW-BCE then turns to focus on refining
the model to output well-calibrated scores with the relevant
parameters being set as δ = 0, ωj =

1
J , and ωi =

1
Î

where Î

is the size of N̂t. Meanwhile, θ is fixed to avoid deterioration
in discriminant performance. Note that the values of w and b
in (3) do not affect the ranking order of the similarity scores,
so these two parameters are optimized throughout the entire
training process.

To leave this section, we summarize the CBRW-BCE based
end-to-end training algorithm for speaker verification, which is
given in Algorithm 2.

IV. EXPERIMENTAL SETUP

A. Datasets

1) Training Data: All neural networks are trained on the
development set of VoxCeleb2 [34], which consists of 1,092,009

TABLE III
BASIC INFORMATION OF THE VOXCELEB1 DATA

utterances from 5994 speakers. The VoxCeleb2 is automatically
collected from open-source media, and the speech segments
are corrupted with real world noise. It is also multilingual with
speech from speakers of 145 different nationalities.

In addition to training models on VoxCeleb2 directly, experi-
ments are also carried out with data augmentation. Specifically,
an online data augmentation [46] is applied to the development
set of VoxCeleb2 with the MUSAN [47] and RIRs [48] datasets
to increase the amount and diversity of the training data.

2) Evaluation Data: Three lists of evaluation trials of the
VoxCeleb1 dataset [42] are used for evaluation. As summarized
in Table III, the three lists are: (i) the cleaned up version of the
original verification test list, i.e., the VoxCeleb1, which consists
of 37,611 trials from 40 speakers; (ii) the cleaned up extend
list of VoxCeleb1-E that randomly samples 579,818 pairs from

2One mini-batch of data consists of 2 U utterances from U speakers, with 2
utterances per speaker. The 2 U utterances are combined with each other, which
generates U(2U − 1) trials including U positive trials and 2U(U − 1) negative
trials.
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the entire VoxCeleb1 dataset covering 1251 speakers; and (iii)
the challenging VoxCeleb1-H list, where 550,894 test pairs are
drawn from identities with the same gender and nationality. Note
that the list files can be downloaded from the VoxCeleb website3.

Besides, the trained models are also evaluated with the Speak-
ers in the Wild (SITW) [49] dataset. SITW is collected from
open-source media. It contains 299 speakers. Each record-
ing varies from 6 to 180 seconds. In this work, two official
“trial-core-core” lists of the “dev” and “eval” parts are used,
which include 338,226 trials and 721,788 trials respectively. For
simplicity, we denote the two sets as Dev.Core and Eval.Core
respectively.

3) Validation Data: The validation list is constructed from
the test part of VoxCeleb2, which consists of a total of 36,237
utterances from 118 speakers. 40,708 trials are randomly formed
using the utterances from the 118 speakers, with up to 110
sentences per speaker. The validation list consists of 6,193 target
trials and 34,515 non-target trials. During the validation process,
only the first 3-second signal of every utterance is used to
compute the similarity scores.

Note that there are no overlapped speakers among the training,
evaluation and validation data.

B. Comparison Among Different Loss Functions

The hyperparameter δ of CBRW-BCE in all experiments is set
to 2.0 unless otherwise stated. We compare CBRW-BCE with
two classification-based loss functions and five metric-learning-
based loss functions. They are listed as follows:
� Standard Softmax loss [3].
� ArcSoftmax loss [25] in which the scale and margin hy-

perparameters are set to 30 and 0.2, respectively [29].
� Softmax-based generalized end-to-end loss (GE2E) [28],

[29].
� Angular prototypical loss (Ang-Prototy) [29].
� Triplet loss [33], detailed description of which is given in

Appendix A.
� Contrastive loss [34], detailed description of which is given

in Appendix A.
� Binary cross entropy (BCE) [17]. Based on the definition

in (5), two versions are evaluated, i.e., 1) no hard negative
mining is used, which is denoted as “BCE (w/o),” and 2)
only 10% most large negative scores of St is selected to
compute LBCE, i.e. 10% most difficult negative training
trials of a batch are used at each training iteration, which
is denoted as “BCE (w)”.

C. Experimental Settings

1) Neural Networks: Three types of neural networks are used
as the backbone networks in our experiments. The first one is
a time delay neural network (TDNN) [4], which is summarized
in Table IV. The TDNN consists of five frame level layers, a
statistic pooling layer and two segment level layers. The network
without the loss function layer has 4.2 million parameters. The
second network is a modified ResNet-34, called the Fast ResNet-
34 [29], which is summarized in Table V. The basic resid-
ual blocks are squeeze-and-excitation blocks (SEBasicBlock).

3https://www.robots.ox.ac.UK/∼vgg/data/voxceleb/vox1.html

TABLE IV
ARCHITECTURE OF THE TDNN. HERE, THE SYMBOL T DENOTES THE TOTAL

FRAMES OF THE INPUT UTTERANCE [4]. THE BATCH NORMALIZATION AND

RELU ACTIVATIONS ARE NOT SHOWN IN THE TABLE

TABLE V
ARCHITECTURE OF THE FAST RESNET-34. THE SYMBOL T DENOTES THE

TOTAL FRAMES OF THE INPUT UTTERANCE. THE BATCH NORMALIZATION AND

RELU ACTIVATIONS ARE NOT SHOWN IN THE TABLE

This network without the loss function layer has 1.4 million
parameters. The third one is an emphasized channel attention,
propagation and aggregation TDNN (ECAPA-TDNN) [50]. It is
an enhanced version of TDNN by introducing one-dimensional
Res2Net modules, squeeze-and-excitation blocks, multi-layer
feature aggregation, and a channel- and context-dependent
statistic pooling layer. The work in [50] presents two setups
to the convolutional frame layers of ECAPA-TDNN, which are
a light setup of 512-channels with 6.2 million parameters and a
larger setup of 1024-channels with 14.7 parameters respectively.

2) Inputs of Networks: For training TDNN, training utter-
ances are partitioned into small frames with a frame length of
25 ms and a frame shift of 10 ms. 30-dimensional Mel-frequency
cepstrum coefficients (MFCCs) are then extracted from every
frame followed by cepstral mean normalization over a sliding
window of 3 seconds. A 2-second long speech segment is then
randomly selected from every utterance, resulting 200 consecu-
tive frames of normalized MFCC vectors, which are used as the
network inputs.

Similarly, the input features are extracted for Fast ResNet-34
and ECAPA-TDNN. The difference is that for Fast ResNet-
34, 40-dimensional log Mel-filterbank energies are extracted
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every frame. Then, instant mean and variance normalization
is applied [29]. While for ECAPA-TDNN, 80-dimensional log
Mel-filterbank energies are extracted every frame followed by
mean normalization [51].

Note that no voice activity detection is used since the speech
signals in both the training and test datasets consist of not much
silence.

3) Training and Evaluation Details: The Adam optimizer
is used. For the TDNN, Fast ResNet-34 and ECAPA-TDNN
of 512-channels, the learning rate is initialized to 0.001 and
it decreases by 5% every 5 epochs. For the ECAPA-TDNN
of 1024-channels, the learning rate is initialized to 0.001 and
decreases by 3% per epoch, and a weight decay of 2e−5 is
applied. For the classification-based loss functions, a fixed batch
size of 256 is used. For the metric-learning-based loss functions,
we use a batch size of 200 speakers with q utterances per speaker,
where q = 3 for GE2E and q = 2 for the others. For TDNN and
Fast ResNet-34, we iterate at most 100 epochs and 150 epochs
for the classification-based and metric-learning-based loss func-
tions respectively. For the ECAPA-TDNN of 512-channels, 60
epochs are iterated for all the studied loss functions except for
the CBRW-BCE with data augmentation where 120 epochs are
iterated. For the ECAPA-TDNN of 1024-channels, we iterate
80 and 120 epochs, respectively, for the classification-based and
metric-learning-based loss functions. Finally, the best model in
terms of EER for every method is used on the validation set for
evaluation.

For the evaluation on the VoxCeleb1 dataset, we follow the
work in [29] and sample ten segments at regular intervals from
every test utterance and each segment is 4-second long (note
that if it is shorter than 4 seconds, the utterance is padded to
be 4-second long with a copy of samples in the front). Ten
embedding vectors are extracted subsequently for every test
utterance. We fist use the cosine similarity scoring function
to evaluate all the studied loss functions. For every evaluation
trial, which consists of two test utterances, the cosine similarity
scores between all possible combinations (10× 10 = 100) of
the ten embedding vectors of the two utterances are computed.
The mean of the scores is computed and used as the final score of
the trial4. In addition, a stage-wise linear discriminant analysis
(LDA) with probabilistic linear discriminant analysis (PLDA)
back-end is also evaluated [4], where ten embedding vectors of
each utterance are first averaged, and the PLDA score is then
computed over the averaged embedding vectors.

For evaluation on the SITW dataset, we follow the work
in [31] and extract an embedding vector by directly using the
entire speech signal of every test utterance. For the end-to-end
evaluation, a cosine similarity scoring back-end is used for all the
studied loss functions. Besides, a stage-wise LDA with PLDA
back-end is also evaluated.

The 512-dimensional embedding vector of TDNN is the
output of the “segment7” in Table IV. The 512-dimensional
embedding vector of the Fast ResNet-34 is the output of the
“Dense layer” in Table V. The 192-dimensional embedding vec-
tor of ECAPA-TDNN is the output of its last batch-normalization
layer [50].

4For the calibration experiments in Section V-D, the linearly transformed
cosine similarity in (3) is used.

D. Evaluation Metrics

The following metrics are used to evaluate the discrimi-
nant performance: EER, partial AUC (pAUC) with α = 0 and
β = 0.05 [14], and normalized minimum detection cost function
(minDCF) with Ptar = 0.05 and Cmiss = Cfa = 1 [52], and the
detection error tradeoff (DET) curves.

For the calibration performance, we report the normalized
actual detection cost function (actDCF) with Ptar = 0.05 and
Cmiss = Cfa = 1. The threshold ξ in (1) is computed with the
Bayes decision theory [19]. The metric Cllr measures how well
the scores represent the LLRs [19]. Because it is affected by both
the discrimination and calibration performance, we evaluate the
effect of miss-calibration by ΔCllr = actCllr −minCllr [39].
The normalized Bayes-error-rate (BER) curves [19] are also
shown.

V. RESULTS AND ANALYSIS

A. Discriminant Performance of CBRW-BCE With the Cosine
Similarity Scoring Back-End

Table VI and Fig. 5 present the discriminant performance
of CBRW-BCE and the compared methods on the VoxCeleb1
dataset. From Table VI, one can see that CBRW-BCE achieves
EERs comparable AcrSoftmax and performs better than the
other compared loss functions. The performance advantage can
also be seen from the DET curves in Fig. 5(a). Although Arc-
Softmax is slightly better than CBRW-BCE in terms of minDCF
and pAUC, it is seen from Fig. 5(a) that the DET curve of
CBRW-BCE is lower than that of ArcSoftmax when the false
positive rate (FPR) is larger than 2%.

Comparing all the studied metric-learning-based loss func-
tions, one can see that CBRW-BCE is superior to the others in
all evaluations. This indicate that CBRW-BCE is able to serve
as a state-of-the-art metric-learning-based loss function for the
end-to-end speaker verification. The DET curve comparison in
Fig. 5(b) further demonstrates the advantage of CBRW-BCE.
Particularly, if comparing CBRW-BCE with the pairwise loss
functions that have similar properties as shown in Table I, we
see that CBRW-BCE yields significantly better performance.
Similar observations can be made from Fig. 5(c). Finally, be-
tween the results of “BCE (w/o)” and “BCE (w)” in Table VI,
one can see that the fixed hard negative mining is able to improve
the discriminant performance significantly.

Table VII lists the results on the SITW dataset. It is seen that
CBRW-BCE achieves better discriminant performance than all
the compared loss functions.

B. Discriminant Performance of CBRW-BCE With the
Stage-Wise PLDA Back-End

Although the focus of this paper is on the end-to-end speaker
verification, we also evaluate the discriminant performance with
the stage-wise PLDA back-end. Before computing the PLDA
scores, LDA is applied to reduce the dimensionality of the
embedding vectors from 512 to 400 for the Fast ResNet-34,
and from 192 to 180 for ECAPA-TDNN. The results are given
in Table VIII. Observations similar to those from the end-to-end
evaluation can be seen. Besides, comparing Tables VI, VII and
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TABLE VI
RESULTS ON THE VOXCELEB1. THE TERMS “(W)” AND “(W/O)” DENOTE THE BCE WITH AND WITHOUT THE HARD NEGATIVE MINING RESPECTIVELY. THE TERM

“[AUG]” DENOTES THAT THE MODEL IS TRAINED WITH AUGMENTED DATA. Δ IS THE HYPERPARAMETER OF THE CURRICULUM LEARNING

Fig. 5. DET curves of the Fast ResNet-34 trained with various loss functions, where the test sets are the VoxCeleb1-E (marked by “-E”) and VoxCeleb1-H
(marked by “-H”) respectively, given Δ = 100.

VIII, we see that the cosine similarity scoring function achieves
better performance than the PLDA back-end in our experiments.

C. Performance Study of Different Components of CBRW-BCE

This subsection investigates the impact of each component
on the performance of CBRW-BCE. The embedding extractor
is the Fast ResNet-34. The batch size is set to 200× 2 unless
otherwise stated. No data augmentation is used.

1) Effects of the Bipartite-Ranking-Based Weighting and
Curriculum Learning: We study the effects of the bipartite-
ranking-based weighting and curriculum learning by comparing
the following three loss functions, i.e., LBCE given in (5),
LBRW-BCE defined in (13), and LCBRW-BCE defined in (17).
Experimental results are presented in Table IX, where the models
are trained with δ = 2 and Δ = 8. It is seen from the results that
LBRW-BCE performs consistently better than LBCE (w/o) on all
the evaluated datasets, which demonstrates the advantage of the
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Fig. 6. Effects of the learnable parameter βt on the discriminant performance of CBRW-BCE, given δ = 2 and Δ = 100.

TABLE VII
RESULTS ON THE SITW DATASET

proposed bipartite-ranking-based weighting over the traditional
BCE loss function. Moreover, LCBRW-BCE achieves approx-
imately 40% relative EER reduction over LBRW-BCE, which
demonstrates the importance of using the curriculum learning.

2) Comparison Between the Curriculum Learning and the
Fixed Hard Negative Mining: The value of the parameter βt in
the curriculum hard negative mining determines the degree of
discriminant difficulty of the hard negative trials. It is learned
asymptotically from 1 to a small value close to 0. To study the
effectiveness of this curriculum learning method, we compare it
with a method with a fixed βt value selected from {1, 0.1, 0.01}.
The results are presented in Fig. 6. From Fig. 6(a), one can see
that in the curriculum learning, the value of βt gradually de-
creases from 1 to around 0.01 as the training iteration progresses,
which is consistent with our original motivation. It is seen from
Fig. 6(b) that the pAUC produced by the curriculum learning
over different iterations reflects the convergence status of the
DNN model training. In contrast, the DNN does not converge
when βt is fixed to a small value, e.g., 0.01, which is due to
the use of too difficult training samples in the early training stage

as a result of a too small, fixed value of βt. One may choose a
large, fixed value for βt, e.g., 1, but the performance is then not
good, which is also evident from the results.

One may consider to treatβt as a hyperparameter and tune it on
the validation set. So, we carry out corresponding experiments
and obtain the best value, which is βt = 0.1. From the results
in Fig. 6(b), it is seen that βt = 0.1 yields a convergence curve
similar to that with the curriculum learning, but the pAUC of
the resulting model is worse (though slightly) on the validation
set. The above advantage stays the same over the test sets as
well, as seen in Fig. 6(c). Moreover, the curriculum hard neg-
ative mining method avoids the tedious hyperparameter tuning
process.

3) Effect of the Hyperparameter Δ on Curriculum Learning:
As seen from the previous experiments, the curriculum leaning is
an important component that affects the performance of CBRW-
BCE. The curriculum leaning has a tunable parameter, i.e., Δ,
which may affect the performance. To study the effect of the
parameter, we set it from 2 to 512. The results on the VoxCeleb1
test sets are shown in Table X, where the models are trained
with δ = 2. It is seen from that CBRW-BCE is insensitive to Δ
though its performance drops slightly as the value ofΔ increases.
Theoretically, if the value of Δ is larger than the number of the
training iterations, LCBRW-BCE becomes LBRW-BCE. To avoid
this to happen, we should set Δ to a small value, e.g., 8.

4) Effect of the Hyperparameter δ on Performance: There is
one hyperparamenter, i.e., δ, in CBRW-BCE that can control the
within-speaker variances. To study the impact of this parameter
on performance, we vary the value of δ from 0 to 10 with a step
size of 1 or 2 in training. Fig. 7 plots the performance curves with
different values of δ. Specifically, Fig. 7(a) plots the curves of
the training loss with respect to the training iterations. It is seen
that the curves have sudden changes at the 102th iteration, which
is caused by the decrease in value of the curriculum parameter
βt as shown in Fig. 6(a).

Fig. 7(b) plots the pAUC curves with respect to the training
iterations on the validation set. Comparing the first two sub-
figures of Fig. 7, one can see that, when δ = 2 and 4, the DNN
model is optimized successfully while some problems appear
for the other studied values of δ. Specifically, when δ = 0, the
training loss of the DNN model increase unexpectedly when
the training iterations are between 103 and 104, which leads to
a decrease in the pAUC curve on the validation set. If δ is set
to a relative small value (i.e. 1) or large values (i.e. 6, 8, 10),
the training loss decreases slowly during the 102th and 104th
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TABLE VIII
DISCRIMINANT PERFORMANCE WITH THE STAGE-WISE LDA WITH PLDA BACK-END

Fig. 7. Effects of the manually-tunable hyperparameter δ on the discriminant performance of CBRW-BCE, given Δ = 100.

TABLE IX
EFFECTS OF THE BIPARTITE-RANKING-BASED WEIGHTING AND CURRICULUM

LEARNING ON THE DISCRIMINANT PERFORMANCE, WHERE THE “(W/O)”
DENOTES WITHOUT HARD NEGATIVE MINING

TABLE X
PERFORMANCE VERSUS Δ WITH THE CURRICULUM LEARNING

iterations; after that, the training process converges quickly. This
may be caused by the bad local minimum of the loss function.

Fig. 7(c) shows the pAUC results of the proposed method with
different values of δ.

5) Effect of the Batch Size on Performance: For every train-
ing iteration, the classification-based loss functions, e.g., Arc-
Softmax, conduct optimization with respect to all the training
speakers. In contrast, the metric-learning-based loss functions
only conduct local optimization with respect to a batch of
randomly selected speakers. Therefore, the batch size is an
important parameter that affect significantly the performance of
the metric-learning-based loss functions. To validate the effect
of the batch size on CBRW-BCE, we set δ = 2, Δ = 100, and
vary the batch size from 32× 2 to 256× 2 and evaluate the
performance. The results are presented in Table XI. It is seen
from Table XI that there is a certain performance drop with
the decrease of the batch size. However, CBRW-BCE can still
produce reasonably good model even when the batch size is
reduced to 32× 2. Note that a larger batch size does not always
yield a better model since the increase of the batch size will
reduce the number of training iterations for every epoch. In
practice, batch size of around 128× 2 is a reasonable choice.

D. Calibration Performance of CBRW-BCE

This subsection investigates the calibration performance of
CBRW-BCE. The linearly transformed cosine similarity scores
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Fig. 8. Results of the calibration performance of CBRW-BCE with δ = 2 and Δ = 100, and BCE (w). The “ResNet” denotes the Fast ResNet-34.

TABLE XI
PERFORMANCE VERSUS THE BATCH SIZE

are computed according to (3). As shown in Table I, except
for the BCE, most compared loss functions do not calibrate
models directly. Therefore, the “BCE (w)” is used as the baseline
to compare. Fig. 8 plots the ΔCllr and actDCF results of the
compared methods. It is seen that models trained by both CBRW-
BCE and “BCE (w)” are generally well calibrated with small
ΔCllr values. It is also seen from Fig. 8(b) that CBRW-BCE
obtains consistently better actDCF than “BCE (w)” in all the
test scenarios. This is because that actDCF depends not only
on the calibration performance but also on the discriminant
performance. Fig. 8(c) plots the normalized BER curve of a
Fast ResNet-34 model, which is trained by CBRW-BCE and
tested on the VoxCeleb1-H. The results demonstrate the great
calibration performance of CBRW-BCE as its BER curve is very
close to the ideal reference curve (the dashed line).

We also compare CBRW-BCE with a general normal-
distribution-based (ND) calibration method, which has a closed-
form solution and is presented in APPENDIX VI. In practice, the
normal distribution assumption may not always be appropriate
for the cosine similarity scores as some loss functions, e.g.,
ArcSoftmax, add a margin to ensure the learned embedding
vectors have small within-speaker variance, which leads to some
skewness in the probability density of the scores. Consequently,
we also modify the ND calibration baseline to a skew-normal-
distribution-based (SND) calibration baseline, which is given in
APPENDIX VI. To verify the effectiveness of this modification,
we conducted a comparison study between the SND calibration
and the ND calibration on simulated similarity scores and the
results are presented in Fig. 9 where the first sub-figure illustrates
the distributions and the second one plots the normalized BER

Fig. 9. Study of the skew normal distribution based calibration method on
simulated skew normal scores.

TABLE XII
CALIBRATION PERFORMANCE COMPARISON BETWEEN THE CBRW-BCE WITH

INDEPENDENT CALIBRATION METHODS. THE “-ND” AND “-SND” DENOTE THE

NORMAL-DISTRIBUTION-BASED AND SKEW-NORMAL-DISTRIBUTION-BASED

METHODS, RESPECTIVELY

curves. The statistics of ND and SND are directly estimated
from the simulated scores. It is seen from the results that the
modified SND achieves good calibration performance while
the normal-distribution-based method does not produce good
calibration results.

Table XII lists the end-to-end calibration results of CBRE-
BCE, the calibration results of ND and SND based on the
models trained by ArcSoftmax and Ang-Prototy with a cosine
similarity back-end. The statistics of the ND and SND methods
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are estimated from the scores of the validation trials, and the
embedding vectors of the validation utterances are extracted on
a 4-second-segment basis so as to be consistent with the test
segments. Note that if an utterance is shorter than 4 seconds, it is
padded to 4-second long similar to what was done in the previous
experiments. Comparing to the results of ND and SND, one
can see that although both get small ΔCllr values, the modified
SND method achieves consistently better actDCF than the ND
method, which proves the effectiveness of the modification.
Furthermore, on the VoxCeleb1-H test set, the CBRW-BCE
achieves considerable improvement in calibration performance
as compared to the ND and SND methods. On the VoxCeleb1-E
test set, the performance of CBRW-BCE is close to the best
baseline though it is slightly worse. These results show that the
model trained by CBRW-BCE is well calibrated.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a loss function called CBRW-BCE
with a method to train DNN models based on the bipartite
ranking and curriculum learning for end-to-end speaker verifica-
tion. Experimental results showed that the speaker verification
model trained with the proposed loss function and training
method improves both the discriminant and calibration perfor-
mance. Specifically, CBRW-BCE achieved the state-of-the-art
discriminant performance, which is comparable to that of the
classification-based ArcSoftmax loss and better than the other
studied methods including the Softmax, triplet, and contrastive
loss functions. Regarding the calibration performance, CBRW-
BCE demonstrated better performance than the end-to-end cal-
ibration baseline BCE, and the normal-distribution and skew-
normal-distribution based calibration methods.

While the proposed method has demonstrated great potential,
efforts are in progress to investigate why the training process of
CBRW-BCE becomes unstable if the margin hyperparameter δ
is set to 0. In addition, how to reduce the complexity of CBRW-
BCE is worth of a further study.

APPENDIX A

The triplet loss and contrastive loss are summarized as fol-
lows. The triplet loss is computed from the training set Tt =
{(xa

n,x
p
n,x

n
n)|n = 1, 2, . . . , N} as

Ltrip =
1

N

N∑
n=1

max(0, ‖xa
n − xp

n‖2 − ‖xa
n − xn

n‖2 +m),

(18)
wherexa

n is an anchor embedding vector,xp
n is a positive embed-

ding vector from the same speaker as xa
n, xn

n is a negative em-
bedding vector from a different speaker as xa

n, and ‖ · ‖ denotes
the �2 norm. All the embedding vectors are �2-normalized [12]
before feeding into theLtrip, andm is set to 0.2 [29]. We employ
the commonly used semi-hard negative mining method [53] for
the triplet loss.

The contrastive loss is computed on the same training set
Tt = {(x1

n,x
2
n, ln)|n = 1, 2, . . . , N} as CBRW-BCE according

Fig. 10. Diagram of the probability density function of the skew normal
distributions, where μ0 and μ1 denote the means of the distributions, μ′

0 and
μ′
1 denote the medians, and μ′′

0 and μ′′
1 denote the modes, respectively.

to

Lcont =
N∑

n=1

[
lnd

2
n + (1− ln)max(ρ− dn, 0)

2
]
, (19)

where dn = ‖x1
n − x2

n‖. All the embedding vectors are �2-
normalized [12] before feeding into Lcont, and ρ is set to 1.
For the negative trials, we select the most difficult 10% samples
from Tt for training at every mini-batch.

In (18) and (19), because we apply �2-normalization to all the
embedding vectors before feeding them into the loss functions,
the square of the �2 distance of two vectors is equivalent to their
cosine similarity. Specifically, assuming that x and y are two
�2-normalized vectors, i.e. ‖x‖ = ‖y‖ = 1, we have:

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2xTy = 2− 2
xTy

‖x‖‖y‖ (20)

Therefore, the cosine similarity scoring function is also a rea-
sonable back-end for the models trained with (18) and (19).

APPENDIX B

The work in [45] compared various calibration methods,
including linear/non-linear and generative/discriminative ones.
Among those, the Gaussian distribution based one can meet most
requirements as long as the mean and variance of the Gaussian
distribution are estimated correctly. Assume that the score s
obeys Gaussian distributions, i.e., s ∼ N(μ0, σ

2
0) for H0 and

s ∼ N(μ1, σ
2
1) for H1. The LLR can then be computed as,

LLR = log

[
P (s|H0)

P (s|H1)

]
=

1

2
log

σ2
1

σ2
0

+
1

2

[
(s− μ1)

2

σ2
1

− (s− μ0)
2

σ2
0

]
, (21)

where the parameters (μ0, σ
2
0) are estimated from a set of

positive scores, denoted by P , of the calibration training data,
i.e.,

μ̂0 =
1

|P|
∑
s∈P

s, σ̂2
0 =

1

|P|
∑
s∈P

(s− μ̂0)
2, (22)

and (μ1, σ
2
1) are estimated similarly but from a set of negative

scores, denoted by N , of the calibration training data.
If there are some skewness in the probability density, as illus-

trated in Fig. 10, a skew normal distribution is more appropriate
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to model the scores. Motivated by the fact that misclassification
errors only happen when the scores fall into the shaded area as
illustrated in Fig. 10, we still use LLR given in (21) but estimate
μ0 and σ2

0 according to

μ̂0 = μ̂′
0, σ̂2

0 =
1

|P′|
∑
s∈P′

(s− μ̂′
0)

2, (23)

where μ̂′
0 denotes the median of P , and P′ consists of the scores

in P that are less than the median μ̂′
0. The parameters (μ1, σ

2
1)

are estimated analogously. Specifically, theμ1 is estimated using
the median μ̂′

1 ofN , and the value ofσ2
1 is estimate from negative

scores in N that are larger than the median μ̂′
1.
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